
1.  Introduction
While climate change's devastating impacts are increasing, people and researchers are becoming more inter-
ested in the science behind it. The global annual increase of atmospheric CO2 is nearly 2 ppm per year (Keeling 
et al., 1995; Lan et al., 2023), which has a significant impact on global warming (IPCC, 2013). Beyond the long-
term trend, atmospheric concentrations of CO2 are also subject to influence from large-scale circulations (e.g., 
Jiang & Yung, 2019; Jiang et al., 2010; Li et al., 2010; Liu et al., 2017).

The El Niño-Southern Oscillation (ENSO) is characterized by recurring changes in sea surface temperatures 
and trade winds (Bjerknes, 1966, 1969). It is found that ENSO can modulate CO2 concentration at the surface 
(Bacastow, 1976). The cessation of the rising ocean water reduces the amount of carbon-rich water brought to 
the ocean surface, leading to a decrease in the amount of CO2 released from the ocean into the atmosphere (e.g., 
Feely, 1987; Feely et al., 2006). Additionally, an increase in respiration during ENSO events causes the terrestrial 
biosphere to become a more significant source of atmospheric CO2 (e.g., Francey et al., 1995; Jones et al., 2001). 
The net result is an increase in the CO2 growth rate during ENSO events from both ocean and land sources (e.g., 
Jones et al., 2001).

This paper aims to examine the impact of ENSO on atmospheric CO2 concentration and biosphere photosynthesis 
in the Indo-Pacific region. The Indo-Pacific region is chosen due to its inclusion of the New Guinea Rainforest, 
the third-largest tropical rainforest, spanning approximately 71 million acres across Indonesia and Papua New 
Guinea. This rainforest serves as a significant sink of atmospheric CO2. To track biosphere photosynthetic activ-
ities, we utilize Solar-Induced Fluorescence (SIF). Additionally, we analyze satellite column CO2 data, precipi-
tation, transport, and burned area to investigate the interaction between the biosphere and the atmosphere during 
the El Niño months. The CarbonTracker model is also employed to assess the impact of ENSO on CO2, aiding in 
our understanding of whether the model accurately simulates CO2 variations in the Indo-Pacific region.
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2.  Data and Models
The methodology employed in this investigation involves the analysis of space-based and ground-based meas-
urements, including (a) SIF retrievals from satellite Orbiting Carbon Observatory 2 (OCO-2), (b) CO2 Column 
retrievals from OCO-2, (c) Southern Oscillation Index (SOI), (d) Multivariate ENSO Index version 2 (MEIv2), 
(e) NCEP2 meteorological data, (f) Burned area data from MODIS, (g) Global precipitation data from GPCP 
version 2.3, and (h) GFEDv4.1 CO2 surface emissions data.

2.1.  OCO-2 SIF and OCO-2 Column CO2 Data

To examine CO2 and photosynthetic activity in the Indo-Pacific region during the El Niño months, we use column 
CO2 retrieved from three high-resolution spectral reflectance (sunlight) bands (A-Band 0.76 μm, near-infrared 
1.61 and 2.06 μm) and SIF retrievals from OCO-2 (Crisp et al., 2017; Frankenberg et al., 2014). Both OCO-2 
column CO2 and SIF retrievals exhibit good agreement with surface and airborne measurements (Wunch 
et al., 2017; Yu et al., 2018). The OCO-2 SIF and Column CO2 data retrievals have been regridded to a 2° × 2° 
resolution (latitude and longitude).

2.2.  Southern Oscillation Index (SOI)

SOI is a metric calculated by taking the sea level pressure differences between Darwin and Tahiti (Trenberth, 1984). 
It is used to examine the spatial distributions of SIF, CO2, and precipitation during El Niño events versus other 
months. A negative (positive) SOI value indicates an El Niño (La Niña) phase (Trenberth, 1984).

2.3.  Multivariate ENSO Index Version 2 (MEIv2) Data

Multivariate ENSO index (MEI) is derived from five oceanic and atmospheric variables (Wolter & Timlin, 1998). 
It will also be used to explore the temporal and spatial variations of SIF, CO2, and precipitation during El Niño 
months. Compared to SOI, the MEI includes information of more variables related to ENSO. In contrast to SOI, 
a positive (negative) MEI value indicates an El Niño (La Niña) phase (Wolter & Timlin, 1998).

2.4.  NCEP2 Data

NCEP2 vertical pressure velocity at 500 hPa (Kanamitsu et al., 2002) is used in this study. In our previous studies 
(e.g., Jiang et al., 2023), we have found that the 500 hPa vertical pressure velocity is a good indicator for vertical 
transport in the mid-troposphere and exhibits a strong correlation with precipitation. The improved version (Reanal-
ysis II) of the NCEP Reanalysis I model data is available through NOAA's Physical Sciences Laboratory (PSL). The 
improved Reanalysis II corrects errors and updates physical processes parametrizations (Kanamitsu et al., 2002). The 
spatial scale is 2.5° latitude × 2.5° longitude. The temporal scale covers monthly values from January 1979 to present.

2.5.  GPCP Meteorological Data

We use Version 2.3 data from the GPCP for the precipitation analysis. The GPCP precipitation data is available 
through NOAA's PSL (Adler et al., 2018). The spatial scale is 2.5° latitude × 2.5° longitude. The temporal scale 
covers monthly values from January 1979 to present.

2.6.  MODIS Burned Area Data and GFEDv4.1 CO2 Surface Emissions Data

The MODIS burned area data, as described by Giglio et al. (2018), are utilized for estimating fire activities. To 
investigate CO2 surface emissions during El Niño months, we rely on the GFEDv4.1 biomass burning emission 
and the CASA biosphere emission (Potter et al., 1993; Thompson et al., 1996).

2.7.  CarbonTracker (CT2019B) Model

We will use NOAA's CarbonTracker (CT2019B) model to assess the accuracy of chemistry-transport models in 
predicting CO2 variation over the Indo-Pacific region. The CarbonTracker simulates CO2 measurements using 
global atmospheric CO2 emissions (sources) and atmospheric CO2 removals (sinks) (Jacobson et  al.,  2020). 
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Air-sea CO2 exchange (Jacobson et al., 2007; Takahashi et al., 2009), CO2 emissions from the biosphere (Potter 
et al., 1993), CO2 emissions from biomass burning (Randerson et al., 2018), and fossil fuel emissions (Boden 
et al., 2017; Oda et al., 2018) are all considered in the CarbonTracker model.

3.  Results
3.1.  Temporal Variations of Different Variables

To study the temporal variation, we first compute the average of different variables over the entire Indo-Pacific 
region (10°S–10°N, 100°–160°E) to generate the regional-average time series. To focus on the interannual 
variations, we eliminate the annual cycles and semi-annual cycles of these variables from the time series. 
A filter is applied to the timeseries, and the signals corresponding to the 12-month and 6-month cycles are 
removed successfully from the timeseries. Figure S1a in Supporting Information S1 illustrates the CO2 time-
series after removing the annual and semi-annual cycles. The corresponding power spectrum is shown in 
Figure S1b in Supporting Information S1. As shown in Figure S1b in Supporting Information S1, the signals 
corresponding to the 12-month and 6-month cycles have been successfully removed from the CO2 timeseries. 
The same analysis has been applied to all timeseries. A linear trend estimated through the least square fit is 
also eliminated from the time series of CO2. The time series of averaged deseasonalized variables are displayed 
in Figure 1. Negative precipitation anomalies occur during the El Niño months (late 2015; Figure 1a) over 
the Indo-Pacific region, which is related to the change of the Walker Circulation. The warm pool will shift to 
the central Pacific in El Niño months (e.g., Bjerknes, 1966, 1969). Rising air will also shift from the western 
Pacific to the central Pacific, while sinking air are over the western Pacific. As shown in Figure 1a, there are 
positive 500 hPa vertical pressure velocities (sinking air) over the western Pacific during the El Niño months 
(late 2015), so there is less precipitation over the Indo-Pacific region during the El Niño. Less precipitation will 
lead to less photosynthesis from the vegetation; thus, the SIF values are low over the western Pacific during 
the El Niño months (late 2015; red line in Figure 1b). As a result, less photosynthetic activities will contribute 
to increased atmospheric CO2 during the El Niño months (late 2015; black line in Figure 1c). For monthly 
CO2 data averaged over 10°S–10°N, 100°–160°E (Figures 1c, 2c, and 3c), there are more than 35,000 OCO-2 
retrievals for each data point. Since the standard error for each retrieval is 1.5 ppm, the CO2 uncertainty for 
data in Figures 1c, 2c, and 3c is less than 0.1 ppm when we divide 1.5 ppm by the square root of number of 
retrievals (Jiang et al., 2023).

Figure 2a displays a scatter plot with a negative correlation between the precipitation and 500 hPa vertical pres-
sure velocity from 2014 to 2019. The correlation coefficient between them is −0.95 (1% significance level; Jiang 
et al., 2004). To estimate a significance level, we first compute a normalized correlation distribution from the 
relevant indices and 3,000 isospectral time series, as described by Jiang et al. (2004). Then, we assess the actual 
correlation's significance in the normal distribution. A lower significance level indicates that the correlation 
coefficient is statistically significant (Jiang et al., 2004). Figure 2b displays a positive correlation between the 
precipitation and SIF from 2014 to 2019. The correlation coefficient between them is 0.79 (1% significance 
level). Figure 2c illustrates a plot between the SIF and CO2, which suggests a weak anti-correlation, −0.20 (20% 
significance level), between them. Such a weak and insignificant correlation implies that atmospheric CO2 is not 
determined only by photosynthetic activity (SIF), instead, atmospheric CO2 is modulated by different variables, 
such as transport and CO2 surface emission from fire (Albright et al., 2022; Jiang et al., 2023).

To further explore the impact of ENSO on precipitation, SIF, and CO2, we conduct a comparative analysis 
between the ENSO indices (SOI and Inverted MEIv2) and these variables. Figure 3a illustrates positive corre-
lations between deseasonalized precipitation and ENSO indices (SOI and Inverted MEI) with correlation coef-
ficients of 0.65 (1% significance level) and 0.69 (1% significance level) for SOI and Inverted MEI, respectively. 
During El Niño months (September–December 2015), there is a decrease in precipitation due to sinking air over 
the Indo-Pacific region. This reduced precipitation during El Niño months will lead to a decline in photosynthetic 
activity. Deseasonalized SIF exhibits positive correlations with ENSO indices, showing correlation coefficients 
of 0.61 (1% significance level) and 0.69 (1% significance level) for SOI and inverted MEI, respectively. Negative 
SIF anomalies are observed in the Indo-Pacific region during El Niño months, which is associated with reduced 
photosynthetic activity and lower precipitation. During El Niño months (September–December 2015), there are 
positive CO2 anomalies over the Indo-Pacific region due to diminished photosynthetic activities (low SIF) and 
increased biomass burning.
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Figure 1.  Panel (a) shows GPCP precipitation (green line) and 500 hPa inverted vertical pressure velocity (orange dashed line). Panel (b) shows GPCP precipitation 
(green line) and Orbiting Carbon Observatory 2 (OCO-2) Solar-Induced Fluorescence (SIF) (red dashed line). Panel (c) shows OCO-2 CO2 (black line) and OCO-2 SIF 
(red dashed line). Data are averaged over 10°S–10°N, 100°–160°E.
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3.2.  Spatial Variations of Different Variables

In Section 3.2, we investigate the spatial distributions of different variables 
across the Indo-Pacific region for the El Niño months and normal months. 
The average values of precipitation, burned area, SIF, and CO2 during El 
Niño months (September–December 2015) and normal months (September–
December 2016) are shown in Figures S2 and S3 in Supporting Informa-
tion S1. We have chosen September–December 2015 as the El Niño months, 
for the MEI index is ∼2 during these months, which is more than two stand-
ard deviations away from the mean MEI values and the ENSO signals are 
strongest during these time periods. Figure S2a in Supporting Information S1 
shows that there is less precipitation (averaged precipitation is ∼130 mm/
month) over the Indo-Pacific region during El Niño months. This leads to 
more burned area (averaged value is ∼0.95 × 10 3 Ha), as indicated by Figure 
S2b in Supporting Information S1, and low SIF values (∼0.7 W/m 2/sr/μm), 
as indicated by Figure S2c in Supporting Information S1. Enhanced biomass 
burning and reduced photosynthetic activities result in higher atmospheric 
CO2 concentrations over the Indo-Pacific region (Figure S2d in Support-
ing Information  S1). Conversely, during the normal months (September–
December 2016), there is more precipitation (∼240  mm/month) over the 
Indo-Pacific region (Figure S3a in Supporting Information S1) due to rising 
air over the western Pacific region. Associated with more precipitation, 
there is less burned area (∼0.2  ×  10 3  Ha; reduced fire activities; Figure 
S3b in Supporting Information  S1) and high SIF values (∼0.9  W/m 2/sr/
μm; enhanced photosynthetic activities; Figure S3c in Supporting Informa-
tion S1). Reduced CO2 biomass burning and strong photosynthetic activities 
result in lower atmospheric CO2 over the Indo-Pacific region.

Differences of GPCP precipitation between (September–December 2015; El 
Niño months) and (September–December 2016; normal months) are shown 
in Figure 4a. There are negative precipitation anomalies over the Indo-Pacific 
region during the El Niño months. Differences in MODIS burned area 
between El Niño months and normal months are shown in Figure 4b. There 
is more burned area during the El Niño months than normal months. Associ-
ated with negative precipitation anomalies, there are negative SIF anomalies 
during the El Niño months (Figure 4c). Due to low SIF (photosynthesis) and 
high biomass burning, there are positive CO2 anomalies over the Indo-Pacific 
region during the El Niño months than the normal months. The CO2 differ-
ence between El Nino months and normal months can reach as high as 
1.5 ppm, which is much greater than the uncertainty in CO2 measurements 
(∼0.1  ppm). For CO2 data shown in Figure  4d, there are more than 700 
OCO-2 retrievals for each grid cell. The CO2 uncertainty for data in Figure 4d 
is less than 0.1 ppm when we divide 1.5 ppm by the square root of the number 
of retrievals. There are also negative CO2 anomalies over the northeastern 
region of Papua New Guinea, which can be attributed to the negative net 
ecosystem exchange (NEE) of CO2 as shown in Figure 5b.

3.3.  Influence of ENSO on CO2 Surface Emissions

The surface CO2 emissions are important source of atmospheric CO2. To enhance our understanding of the 
impact of ENSO on atmospheric CO2, we analyzed averaged GFEDv4.1 CO2 emissions data for El Niño months 
(September–December 2015) and normal months (September–December 2016), as presented in Figures S4 and 
S5 in Supporting Information S1. More CO2 is released from the fire in the El Niño months (Figure S4a in 
Supporting Information S1), owing to reduced precipitation (dry weather) across the Indo-Pacific region. Addi-
tionally, Figure S4b in Supporting Information S1 demonstrates that CO2 NEE is high over most regions of the 

Figure 2.  Panel (a) shows a scatter plot of the GPCP precipitation and 
vertical pressure velocity from 2014 to 2019. Panel (b) shows a scatter plot 
of the GPCP precipitation and Orbiting Carbon Observatory 2 (OCO-2) 
Solar-Induced Fluorescence (SIF) from 2014 to 2019. Panel (c) shows a scatter 
plot of the OCO-2 SIF and OCO-2 CO2.
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Figure 3.  (a) Time series of GPCP precipitation (green line), Southern Oscillation Index (SOI) (purple dotted line), and inverted multivariate El Niño-Southern 
Oscillation index (MEI) (solid purple line). (b) Time series of Orbiting Carbon Observatory 2 (OCO-2) Solar-Induced Fluorescence (red line), SOI (purple dotted line), 
and inverted MEI (solid purple line). (c) Time series of OCO-2 CO2 (black line), SOI (purple dotted line), and inverted MEI (solid purple line). Data are averaged over 
10°S–10°N, 100°–160°E.
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Indo-Pacific region during the El Niño months, leading to more CO2 being emitted from the biosphere into 
the atmosphere, as a result of low photosynthetic activities across the same region (Figure S4d in Supporting 
Information S1). Figure S5 in Supporting Information S1 exhibits the results for the normal months (September–
December 2016). During the normal months, CO2 emissions from biomass burning are low due to high precipita-
tion across the Indo-Pacific region. Moreover, CO2 NEE is low during normal months (Figure S5b in Supporting 
Information S1) due to high photosynthetic activities (Figure S5d in Supporting Information S1). The differences 
in GFEDv4.1 CO2 emissions between the El Niño months (September–December 2015) and the normal months 
(September–December 2016) are shown in Figure 5. As presented in Figure 5a, the El Niño months resulted 
in the release of more CO2 from biomass burning than the normal months (September–December 2016). NEE 
shows positive (negative) anomalies over western (eastern) Indonesia, consistent with the anomalies in photo-
synthesis (Figure 5d). The photosynthesis patterns are similar to those obtained from the SIF results (Figure 4c).

3.4.  CarbonTracker Model Analysis

To assess the performance of chemistry-transport models in simulating CO2 variations over the Indo-Pacific region, 
we evaluate CO2 simulations of NOAA's CarbonTracker model (Jacobson et al., 2020). Model CO2 vertical profiles 
are convolved with the CO2 averaging kernel from the OCO-2. Figure 6a shows the difference in CarbonTracker 
column CO2 between September–December 2015 (El Niño months) and September–December 2016 (normal 
months). Higher model column CO2 is seen over the Indo Pacific in the El Niño months than the normal months, 
which is similar to those from OCO-2 column CO2. However, the model fails to capture the positive CO2 anomalies 

Figure 4.  (a) Difference of GPCP precipitation between September–December 2015 and September-December 2016. (b) Difference of MODIS burned area 
between September–December 2015 and September–Decmber 2016. (c) Difference of Orbiting Carbon Observatory 2 (OCO-2) Solar-Induced Fluorescence between 
September–December 2015 and September–December 2016. (d) Difference of OCO-2 CO2 between September–December 2015 and September–December 2016.
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over the eastern part of Indonesia. To better explore the difference between CarbonTracker model CO2 and OCO-2 
column CO2, we estimate CarbonTracker CO2 surface emission differences between El Niño months and normal 
months (Figure S6 in Supporting Information S1). As shown in Figure S6a in Supporting Information S1, more 
CO2 is released from biomass burning during El Niño months (September–December 2015) than the normal 
months (September–December 2016), which is consistent with results from GFEDv4.1 biomass burning emissions 
(Figure 5a). The CarbonTracker CO2 surface emissions from the biosphere (Figure S6b in Supporting Informa-
tion S1) indicate positive anomalies in western Indonesia during El Niño months compared to normal months (Figure 
S6b in Supporting Information S1). However, it fails to capture the positive CO2 biosphere emissions in Kalimantan 
Island and southern Papua Island, as depicted in the GFEDv4.1 NEE (Figure 5b). This might be a contributing factor 
to why the CarbonTracker model fails to capture the positive CO2 anomalies in the eastern part of Indonesia.

Convolved model CO2 is averaged over 10°S–10°N, 100°–160°E. Deseasonalized CarbonTracker column CO2 
(blue line) is compared to deseasonalized OCO-2 CO2 (black line) in Figure 6b, with a correlation coefficient of 
0.66 (1% significance level). The model can simulate temporal variations of CO2 reasonably well. Model CO2 is 
also compared to SOI (purple dotted line) and MEI (purple solid line). As shown in Figure 6b, CO2 concentration 
increases during El Niño months over the Indo-Pacific region.

4.  Conclusions
The selection of the Indo-Pacific region in this study was motivated by the presence of the third largest tropical 
rainforest (New Guinea Rainforest). Previous analyses (e.g., Jiang et  al.,  2021, 2023) have demonstrated that 

Figure 5.  Difference of GFEDv4.1 data between September–December 2015 and September–December 2016. (a) CO2 biomass burning emission, (b) CO2 net 
ecosystem exchange, (c) CO2 respiration, and (d) CO2 photosynthesis.
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atmospheric CO2 concentrations in the tropical rainforests (e.g., Amazon and Congo) are sensitive to variations 
in dry and wet conditions, which influence the photosynthetic activities of plants and the emissions from fires. 
During the dry/fire season, tropical rainforests transition from being carbon sinks to carbon sources (Jiang 
et al., 2023). The focus of our study is to examine the impacts of ENSO on the carbon budget within the third 
largest tropical rainforest, with a particular emphasis on investigating the variations of different variables (CO2, 
precipitation, SIF, and burned area) across the Indo-Pacific region.

Our findings indicate that the Indo-Pacific region is directly influenced by ENSO events. Reduced precipi-
tation during El Niño months (September–December 2015) over the Indo-Pacific region results in decreased 

Figure 6.  (a) Difference of CarbonTracker column CO2 between September–December 2015 and September–December 2016. (b) Time series of CarbonTracker 
column CO2 (blue line), Orbiting Carbon Observatory 2 CO2 (black line), southern-oscillation index (SOI) (purple dotted line), and multivariate El Niño-Southern 
Oscillation index (solid purple line). Data are averaged over 10°S–10°N, 100°–160°E.
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photosynthesis (indicated by reduced SIF) and increased biomass burning, leading to increased atmospheric CO2 
over the region. This suggests that the Indo-Pacific region (New Guinea Rainforest) shifts to a carbon source in 
the El Niño months, which is very important for the carbon budget over the rainforest region.

Given the significance of ENSO on forests, particularly in terms of CO2 emissions from both biomass burning 
and photosynthesis, it is essential to get an accurate idea of how ENSO impacts CO2 and SIF. Determining the 
impact of ENSO on CO2 and SIF will help develop successful policies for climate change mitigation and adap-
tation efforts.

The comparative study between observational analyses and numerical simulations suggests that the current 
chemistry-transport models can capture the dominant influences of ENSO events on the regional-average CO2 
variations across the Indo-Pacific region. However, there are limitations in reproducing spatial pattern of CO2 
variations in some areas of the Indo-Pacific region (e.g., the eastern part of Indonesia). The observational charac-
teristics from this study can help us develop these models by improving the simulations of ENSO's influence on 
CO2, which further benefit the monitoring and prediction of this significant greenhouse gas.

Data Availability Statement
SIF data (Frankenberg et al., 2014) and CO2 data (Crisp et al., 2017) from OCO-2 can be accessed at https://
disc.gsfc.nasa.gov/datasets?keywords=oco-2&page=1. The NOAA SOI data (Trenberth,  1984) can be found 
at https://www.cpc.ncep.noaa.gov/data/indices/soi. For the GPCP precipitation data sets (Adler et  al.,  2018), 
you can find it at https://psl.noaa.gov/data/gridded/data.gpcp.html. MEIv2 data (Wolter & Timlin,  1998) are 
from https://psl.noaa.gov/enso/mei/. The MODIS burned area data (Giglio et al., 2018) are from http://modis-
fire.umd.edu/. For GFEDv4.1 data (Randerson et al., 2018), you can find it at https://daac.ornl.gov/VEGETA-
TION/guides/fire_emissions_v4_R1.html. CarbonTracker CT2019B model CO2 (Jacobson et al., 2020) can be 
downloaded from https://gml.noaa.gov/ccgg/carbontracker/index.php. We list websites for all data in Table S1 in 
Supporting Information S1.
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