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Abstract Atmospheric Infrared Sounder (AIRS) midtropospheric methane (CH4) data are utilized to study
the variation of methane concentrations over the Pacific Ocean with an emphasis on the correlation to El
Niño–Southern Oscillation (ENSO). When El Niño events happen, the rising air over the central Pacific can
bring low surface concentrations of CH4 over the ocean into midtroposphere, resulting in a reduction of
midtropospheric CH4 over the region. On the contrary, the rising air over the western Pacific brings low
surface CH4 to the midtroposphere during the La Nina events, which leads to negative midtropospheric CH4

anomalies over the western Pacific. In the horizontal direction, there are stronger southward winds during
El Niño than La Niñamonths in the region of the western Pacific Ocean. The stronger southward winds during
El Niño can enhance the transport of high-concentration CH4 from the Northern Hemisphere to the tropical
western Pacific region and contribute to the positive CH4 anomalies over the region. The difference of
midtropospheric CH4 can reach +15 ppb (�15 ppb) over the western (central) Pacific between El Niño and La
Niña events. The noteworthy difference of CH4 has a significant correlation to the Southern Oscillation
Index with a correlation coefficient of 0.74. The change in the transports associated with the ENSO event is an
important factor for CH4 anomalies in the middle troposphere. Results found in this study can help us
better understand the spatiotemporal variability of methane.

1. Introduction

As one of the most important greenhouse gases, methane (CH4) is ~28 times stronger than carbon dioxide in
heating the atmosphere [Myhre et al., 2014]. CH4 also has an important role in atmospheric chemistry [Myhre
et al., 2014]. Anthropogenic sources of CH4 include fossil fuel production and distribution, agriculture and
livestock, biomass burning, and landfills [Myhre et al., 2014]. Natural sources include wetlands. Removals of
CH4 from the atmosphere include reactions with the hydroxyl radical and free chlorine [Platt et al., 2004;
Allan et al., 2005; Born et al., 1990].

Global CH4 ground-based measurements have been made since the early 1980s, but due to the inconsistent
spatial grid and extremely difficult measurement conditions, ground-based measurements are limited in
space and cannot adequately represent the global concentrations [Dlugokencky et al., 1994]. Additionally,
ground-based measurements left many locations all over the globe unmeasured, such as the oceans
[Dlugokencky et al., 1994; Dlugokencky et al., 1995]. NOAA/GMD operated 40 surface measurements of CH4

over the globe, which resulted in a global average CH4 concentration ~1774.62 ± 1.22 ppb [Dlugokencky
et al., 2005]. Measurements of atmospheric CH4 concentration demonstrate that atmospheric CH4 has
increased over 20 years; however, the growth rate of CH4 is not constant [Dlugokencky et al., 2003]. For
example, the growth rate of CH4 has decreased substantially from the 1970s and early 1980s and had a sig-
nificant increase during 1998 [Blake and Rowland, 1988]. Dlugokencky et al. [2003] attribute the increase in
concentration in 1998 to the boreal biomass burning emission, which is further correlated to the warmest
surface temperature in 1998 [Dlugokencky et al., 2003]. Additionally, Butler et al. [2005] suggest unusually
high biomass burning contributed to the rise in 1998. The increase in methane concentration has been small
since 2000 [Dlugokencky et al., 2003] but then rapidly increased in 2007 [Bousquet et al., 2011]. As suggested
by two atmospheric inversions, a positive anomaly of tropical emission is a contributor for the global CH4

emission anomalies (~60–80%) in 2007 [Bousquet et al., 2011]. In addition, increased CH4 emissions from
wetlands and fossil fuel production and combustion could also be a contributing factor in the rapid increase
of methane concentrations in 2007 [Kirschke et al., 2013]. Using satellite retrievals and surface observations,
it has been found that CH4 emissions increased >30% in the United States from 2002 to 2014 [Turner
et al., 2016].
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Global spaceborne measurements allow the study of global variations of CH4 with a better spatial coverage
than ever before. Additionally, satellite measurements allow a better understanding of the vertical variation
of CH4. More knowledge of the vertical variation of CH4 can help us better understand its impacts on current
and future climate change. Schoeberl et al. [1995] and Park et al. [2004] utilized CH4 data from the Halogen
Occultation Experiment and found CH4 seasonal cycle in the tropopause region. CH4 measurements are
available from many different satellites, including ADEOS, GOSAT, SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography), AIRS (Atmospheric Infrared Sounder), and IASI
[Clerbaux et al., 2003; Frankenberg et al., 2005; Frankenberg et al., 2006; Xiong et al., 2008; Razavi et al., 2009;
Saitoh et al., 2012; Crevoisier et al., 2013; Xiong et al., 2013].

Zhang et al. [2011] used CH4 data from the Atmospheric Infrared Sounder (AIRS) to study middle-upper tropo-
spheric methane and found that AIRS CH4 agrees well with the Fourier transform infrared profiles in China
[Zhang et al., 2011]. Xiong et al. [2009] found a strong CH4 plume in the middle troposphere during South
Asia monsoon seasons (July–September), providing evidence of strong upward transport moving CH4 from
the surface to middle troposphere [Xiong et al., 2009]. Results in Xiong et al. [2009] are further confirmed with
the model tracer model version 3 (TM3), later satellite observations from IASI, and CARIBIC aircraft measure-
ments [Xiong et al., 2009; Crevoisier et al., 2009; Schuck et al., 2012]. Enhanced upper tropospheric CH4 anoma-
lies were also seen during the TACTS aircraft campaign, which sampled from the surface to the upper
troposphere during the South Asia monsoon season [Vogel et al., 2014].

El Niño–Southern Oscillation (ENSO) has an important influence on large-scale wind patterns, tempera-
ture, pressure, precipitation, and trace gases [Gage and Reid, 1987; Jiang et al., 2010, 2013]. It was found
that ENSO could influence concentrations of CO2 and ozone [Jiang et al., 2010; Wang et al., 2011].
However, there is no previous analysis on exploring the influence of ENSO on CH4 in the middle tropo-
sphere. In this manuscript, we will explore possible relationship between ENSO and AIRS midtropospheric
CH4 for the first time.

2. Data and Methods

In this study, we used AIRS version 6 CH4 data at 400 hPa to study possible relationship between ENSO and
CH4 in the middle troposphere. AIRS is an infrared spectrometer, which has 2378 channels at 649–2674 cm�1

[Aumann et al., 2003]. The satellite passes the equator twice a day at 1:30 A.M. and 1:30 P.M. [Pagano et al.,
2003]. In addition to temperature [Aumann et al., 2003] and cloud [Kahn et al., 2014], AIRS also provides trace
gas data products such as H2O, CH4, CO2, and CO [Fetzer et al., 2006; Xiong et al., 2010; Chahine et al., 2008;
Warner et al., 2014]. Channels near 7.6 μm are chosen to retrieve CH4, which is the best channel and is most
sensitive to the midtropospheric CH4 retrieval [Xiong et al., 2008]. AIRS CH4 data provide a global measure-
ment of CH4 about twice a day. AIRS methane data have already been validated by in situ aircraft observa-
tions, and it agrees well with the aircraft data [Xiong et al., 2008, 2015]. Therefore, the retrievals of CH4

from AIRS can help us better understand CH4 global distributions and variations.

In addition to AIRS midtropospheric CH4 data, we will also analyze CH4 aircraft profiles from the HIAPER Pole-
to-Pole (HIPPO) aircraft campaign [Wofsy et al., 2011]. HIPPO aircraft CH4 data are available on 9 January 2009,
31 October 2009, 16 March 2010, 7 June 2011, and 9 August 2011. HIPPO aircraft CH4 data cover from surface
to 15 km and are available from 70°S to 80°N [Wofsy et al., 2011].

Linear trend and annual cycle will be removed from AIRS midtropospheric CH4 data. To identify El Niño or La
Niña months, the Southern Oscillation Index (SOI), defined by the difference of the sea level pressure
between two locations (Tahiti and Darwin) over the Pacific Ocean, will be used to identify El Niño or La
Niña months from September 2002 to December 2014. When the SOI index is below (above) the mean value
by one standard deviation of the SOI, the event is classified as an El Niño (La Niña) event.

3. Results

To explore possible relationship between ENSO and CH4, we separate AIRS midtropospheric CH4 data to two
groups (El Niño months and La Niña months). When SOI index is below (above) the mean value by one
standard deviation of the SOI, it is classified as El Niño (La Niña) events. Following this definition, there are
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18 El Niño months and 23 La Niña months from September 2002 to December 2014. We remove linear trend
and annual cycle from AIRS midtropospheric CH4. AIRS detrended and deseasonalized CH4 are averaged over
the El Niño and La Niñamonths, respectively. Results are shown in Figures 1a and 1b. Sea surface temperature
demonstrates positive anomalies over the central Pacific during El Niño; as a result, there is rising air over the
central Pacific [Gage and Reid, 1987]. Rising air over the central Pacific can bring low surface concentrations of
CH4 to the middle troposphere. Figure 1a demonstrates low concentrations of midtropospheric CH4 over the
central Pacific, which is related to the rising air over this region. Conversely, the sea surface temperature
demonstrates positive anomalies in the western Pacific and there are anomalously rising motion over

Figure 1. (a) AIRS detrended and deseasonalized midtropospheric CH4 averaged for 18 El Niñomonths, (b) AIRS detrended
and deseasonalized midtropospheric CH4 averaged for 23 La Niña months, (c) AIRS midtropospheric CH4 difference
between El Niño and La Niña events, and (d) CH4 differences within 10% significance level are highlighted in blue. Data
visualizations are produced using Interactive Data Language version 8.3 (Exelis Visual Information Solutions, Boulder,
Colorado; http://www.harrisgeospatial.com/).
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the western Pacific at La Niña months. Figure 1b shows that midtropospheric CH4 concentrations are
relatively low over the western Pacific at La Niña months. Low midtropospheric CH4 is associated with the
anomalously rising motion over this region, which can bring low concentrations of CH4 from the surface to
upper altitudes at La Niña months.

Difference of AIRS CH4 concentrations between El Niño and La Niña months is shown in Figure 1c. The
difference is about �15 ppb (15 ppb) over the central (western) Pacific. We estimate the probability density
functions of CH4 difference between AIRS midtropospheric retrievals and convolved aircraft CH4. Nine
hundred forty-one aircraft profiles are used. The differences of AIRS midtropospheric CH4 and aircraft
convolved CH4 follow a Gaussian distribution, so the errors are random errors. Random errors are errors
moving in positive and negative directions and have a tendency to cancel each other. When the number
of observations increases, the errors will decrease. There are 3000–4000 CH4 retrievals in each grid box
for each group. The error for the mean CH4 due to the random error is about 0.5 ppb, which is equal to
the standard error (~25 ppb) divided by the square root of number of data points. (See detailed method
in Jiang et al. [2015].) It is smaller than 15 ppb difference as shown in Figure 1c. Figure 1d shows the
statistical significance of CH4 difference between two groups (El Niño/La Niña). Student’s t test is utilized
in estimating the significance [Jiang et al., 2010]. When CH4 difference is within 10% significance level, it
is highlighted as blue color in Figure 1d. Blue areas in Figure 1d mean that the differences in Figure 1c
are statistically significant.

In addition to exploring the spatial patterns of CH4 at El Niño/La Niña months, we also investigate whether
the ENSO can influence the temporal variations of CH4 in the middle troposphere. Detrended difference of
midtropospheric CH4 between two regions (the central Pacific (175°E–225°E; 10°S–10°N) and the western
Pacific (95°E–145°E, 10°S–10°N)) is calculated and shown in Figure 2a. Figure 2a also displays the detrended
SOI (red dashed line). Figure 2a shows that the CH4 difference between the two regions is negative for El Niño
events and positive for La Niña events, which is consistent with the spatial pattern results in Figure 1.

Using a Monte Carlo method [Press et al., 1992; Devore, 1982; Jiang et al., 2004], we calculate the correlation
coefficient between the two time series in Figure 2a (i.e., CH4 difference and SOI) and the corresponding sig-
nificance level. Our analyses suggest that the correlation coefficient between the two time series (i.e., CH4

Figure 2. (a) Detrended AIRS midtropospheric CH4 difference between central Pacific (175°E–225°E; 10°S–10°N) and
western Pacific (95°E–145°E, 10°S–10°N) (black solid line) and detrended Southern Oscillation Index (red dashed line).
Correlation coefficient between two time series is 0.74 (1% significance level). (b) Same as Figure 2a but with a low-pass
filter. Correlation coefficient between two low-pass-filtered time series is 0.96 (1%).
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difference and SOI) is 0.74. The signifi-
cance level for the correlation coeffi-
cient is 1%, which suggests that the
two time series in Figure 2a are corre-
lated significantly. The interannual
variability of the two time series is
further investigated by filtering out
high-frequency oscillations. All high-
frequency oscillations with period smal-
ler than 15 months are removed using a
low-pass filter [Jiang et al., 2013]. As
shown in Figure 2b, the two low-
pass-filtered time series correlate well,
with a correlation coefficient of 0.96
(significance level 1%), which implies a
significant correlation for the interann-
ual signals in the two time series (CH4

differences and SOI).

In addition to the vertical transport, interhemispheric transport might also influence CH4 concentrations. To
reveal that, we estimate the differences of NCEP2 500 hPa meridional winds between El Niño and La Niña
months. There are stronger anomalous southward winds at El Niño months over the western Pacific than
La Niña months. It can move high-concentration CH4 from the Northern Hemisphere to the tropical region,
which can contribute to the positive CH4 anomalies in the western Pacific Ocean as shown in Figure 1c.
We also realize that some impacts to CH4 anomaly in the middle-upper troposphere can be from surface
emissions and the photochemical reaction. The major impact of surface emission is from surface tempera-
ture, biomass burning, and water level in rice paddies at Thailand, Indonesia, and Malaysia, which can be
modulated by El Niño/La Niña events. Even with some small change in the surface emission, their impact
on CH4 in the middle troposphere is still a secondary factor [Xiong et al., 2009]. During El Niño, there are more
biomass burnings, which can influence OH concentrations [Duncan et al., 2003; Levine, 1996; Van der Werf
et al., 2006; Kaiser et al., 2012]. The change of OH concentration in the atmosphere during El Niño/La Niña
events can lead to the CH4 destruction in the atmosphere, but it is hard to estimate such impact. This is
because the OH concentration can either increase or decrease in different areas after including biomass
burning in the model and there is not any evidence for this change of OH over the global scale during
El Niño/La Niña [Levine, 1996]. We also estimate the cross correlation of monthly mean AIRS midtropospheric
CH4 difference and detrended Southern Oscillation Index in Figure 2a. The maximum correlation is 0.74 when
the lag is 0 month. Vertical motion can bring air from the surface to midtroposphere about 1 day [Li et al.,
2010], and the lifetime of CH4 with reacting with OH in the free troposphere is about 9–10 years [Jacob,
1999], which suggest that impact of large-scale circulation on midtropospheric CH4 is more dominant than
the contribution from OH. We will explore the impact of the surface emission on the middle-upper
tropospheric CH4 when we have good CH4 surface emission data over the ocean in the future.

Our analyses reveal the influence of large-scale circulation on atmospheric CH4 over the tropical ocean during
El Niño and La Niña. To better understand the vertical structure of CH4, we analyze CH4 aircraft profiles from
the HIPPO aircraft campaign over the tropical ocean. Vertical profiles for HIPPO aircraft CH4 over the Pacific
Ocean are shown as grey lines in Figure 3. Mean value and standard deviation of all HIPPO aircraft CH4 over
the Pacific Ocean are estimated and shown as red lines in Figure 3. As shown in Figure 3, CH4 concentrations
are lower near the surface than in the midtroposphere, as there is no CH4 surface emission source over the
ocean. We also separated HIPPO aircraft CH4 data to Northern Hemisphere and Southern Hemisphere over
the Pacific Ocean and found that mean CH4 concentrations are lower near the surface than the midtropo-
sphere for both regions. These results are consistent with previous CH4 vertical profile results from IASI
and HIPPO over Pacific Ocean as suggested by Xiong et al. [2013]. The relatively low CH4 concentrations at
the surface than the midtroposphere coupled with changes in the circulation during El Niño/La Niña events
lead to midtropospheric CH4 anomalies as shown in Figure 1c.

Figure 3. HIPPO CH4 aircraft vertical profiles over Pacific Ocean (Grey
lines). Red line is the mean value for all aircraft profiles. Error bars are
standard deviations of CH4 at different altitudes.

Earth and Space Science 10.1002/2017EA000281

CORBETT ET AL. MODULATION OF METHANE BY EL NIÑO 5



4. Conclusion

Using AIRS version 6 data, we explore midtropospheric methane concentrations at the tropical Pacific region
and investigate the influence of El Niño/La Niña on CH4 for the first time. Enhanced rising air at the central
Pacific in El Niño months can bring low surface concentrations of CH4 over the ocean to the middle tropo-
sphere, so there is less CH4 over the central Pacific than the western Pacific. Rising air can bring low surface
concentrations of CH4 to the middle troposphere over the western Pacific in La Niña months, so there is less
CH4 over western Pacific than the central Pacific. In addition to the vertical transport, interhemispheric trans-
port can also modulate CH4 concentrations. The differences of NCEP2 500 hPa meridional winds (El Niño-La
Niña) reveal that there are stronger southward winds during El Niño months over the western Pacific Ocean
than La Niña months. It can contribute to the high CH4 concentrations over the western Pacific Ocean in
El Niño.

In addition to the spatial pattern, we also analyzed the temporal variation of midtropospheric CH4 difference
between two regions of Pacific Ocean (central Pacific and western Pacific). Our analyses reveal that the CH4

difference between the two regions has a significant correlation to the SOI index. Results obtained from this
study suggest that midtropospheric CH4 concentrations can be modulated by ENSO. When we have good
CH4 surface emission data over the ocean in the future, we will explore the impact of the surface emission
on the middle-upper tropospheric CH4.

As an important greenhouse gas, methane is critical to understand climate change and global warming. In
this paper, we reveal that midtropospheric CH4 concentrations can be modulated by ENSO for the first time.
Our investigations of the spatiotemporal variations of methane will help us better resolve the
heating/cooling rates related to methane and its roles in adjusting the global temperature. The anomalously
vertical winds and southward winds can redistribute methane over the tropics during El Niño events.
Meanwhile, the observed variations of midtropospheric methane can help us identify possible deficiencies
in the general circulation models and help modelers to better constrain/modify the large-scale vertical
motion as a passive tracer. The correlation between methane anomaly and ENSO also provides one more
way to monitor the ENSO events from satellite observations. Finally, the spatiotemporal characteristics of
methane are helpful for better simulating the influence of ENSO on tracers, because such observational
characteristics provide constraints on numerical simulations.
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