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Abstract Wildfires have broad impacts on the atmosphere, ecology, and society. This study leverages
satellite data and chemistry‐transport models to analyze the impact of wildfires on trace gases in California
during the August‐October periods of 2018, 2019, and 2020. During these months, Southern California
experiences minimal precipitation, leading to a high Vapor Pressure Deficit, which results in decreased
photosynthetic activities. This reduction, combined with increased biomass burning, causes a rise in CO2

concentrations. Increased CO and CH4 levels are also seen in TROPOMI retrievals tied to the increase in
biomass burning. The CarbonTracker model captures these elevated CO2 concentrations, though with a reduced
amplitude of increased CO2. Similarly, the GEOS‐Chem model successfully simulates high CO levels but
underestimates the observed enhancements. These findings will improve the understanding of fire's influence on
trace gases and refine future numerical models on surface emissions and transport.

Plain Language Summary The impacts of fires on trace gases (CO2, CO, and CH4) are examined
from August to October in 2018, 2019, and 2020. During California's dry season, elevated concentrations of
these trace gases are noted in satellite data, but the contributing mechanisms differ. CO concentrations primarily
stem from biomass burning emissions, while CO2 levels are affected by increased biomass burning and reduced
photosynthetic activities. In contrast, CH4 levels are impacted by both agriculture and biomass burning. These
findings shed light on the complex relationship between fires and atmospheric trace gases, offering crucial
insights to enhance future numerical models. A deeper understanding of the trace gas emissions from wildfires
is also essential for assessing their impact on the climate system, air quality, and public health.

1. Introduction
With the wildfires in Hawaii, which mark one of the most devastating wildfire events in US history, biomass
burning is receiving increasing attention. In addition to the huge societal damage, wildfires have significant
impacts on the environment by destroying large areas of vegetation and releasing tremendous amounts of gaseous
and particulate components into the atmosphere (Chin et al., 2002; Scholes & Andreae, 2000). For instance, there
were 1910 fires (covering 2.73 million acres) from 1989 to 1998, whereas the period from 2009 to 2018 witnessed
3,356 fires (encompassing 7.08 million acres) in California alone (Buechi et al., 2021), suggesting a positive trend
in California wildfires.

California is prone to enormous wildfires both in terms of intensity and frequency. Keeley and Syphard (2019)
have found that wildfire's occurrence has significantly intensified in recent years. It reached an extreme level in
2017 and 2018, resulting in significant loss of life and property. The cost of fire suppression during these 2 years
exceeded $1.5 billion, surpassing the previous 2 years (CalFire, 2018). It is also found that small fires and human‐
induced wildfires have increased rapidly in California over the past two decades (S. Li & Banerjee, 2021). While
multiple factors contribute to wildfires, it has been shown that climate change is a critical factor for wildfires (e.g.,
Abatzoglou et al., 2019; Williams et al., 2019). For instance, periods of severe droughts, such as those in the
decades of 1920–1930 and 1990–2020, have correlated with large amounts of area burned by massive fires in
California (Keeley & Syphard, 2021).

Williams et al. (2019) offer valuable insights through a comparison of summer and fall wildfires in California. By
analyzing California wildfires from 1972 to 2018, they found that the response of summer‐burned areas to at-
mospheric vapor pressure deficit follows an exponential function. This implies that nearly all the summer forest
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fires are driven by an increase in vapor pressure deficit. On the other hand, wind and low precipitation are the
primary causes of wildfires during the fall season. The authors further argue that the underlying warming has
amplified the potential for large wildfires in California.

The increase in biomass burning contributes significantly to the release of greenhouse gases (GHGs), such as CO2

and CH4, and pollutants like CO, which can affect atmospheric chemistry. The uptake of carbon by the biosphere
can modulate CO2 concentrations (Ahlström et al., 2015). While the terrestrial biosphere is considered a sink for
atmospheric CO2 (e.g., Poulter et al., 2014), it can also switch into a source of CO2 during extreme conditions
(Biederman et al., 2017; Jiang et al., 2021, 2023; A. X. Li et al., 2019). Therefore, monitoring surface CO2 flux
anomalies is crucial for understanding atmospheric CO2 levels.

Although CO is not considered a greenhouse gas, it is classified as a pollutant harmful to public health and the
environment. The dominant sources of CO are incomplete combustion from fuel and biomass burning (Worden
et al., 2013). Bergamaschi et al. (2000) found that ∼25% of global CO is due to biomass burning. Fires in forests,
shrublands, and peatlands produce more CO and other reduced trace gases (e.g., CH4 and NH3) because of
significant smoldering compared to grass fires, where more efficient combustion occurs. For example, Africa is
responsible for ∼72% of the total global burned area, yet produces only ∼44% of total global CO emissions (van
derWerf et al., 2010). In contrast, Southeast and Equatorial Asia account for only 2.5% of the total burned area but
contribute 22% of total global CO emissions (van der Werf et al., 2010). Furthermore, the 1–2 months lifetime
makes CO a valuable tracer for studying tropospheric circulation, convection, and troposphere‐stratosphere
exchange (Pan et al., 1998).

In this paper, we will combine satellite data and numerical simulations to investigate the impact of California fires
on trace gases (such as CO2, CO, and CH4). Column CO2 from OCO‐2, CO, CH4, and Solar‐Induced Fluores-
cence (SIF) from TROPOMI, the burned area from MODIS will be utilized in this study. In addition, CO2

simulations from the NOAA CarbonTracker model and CO simulation from GEOS‐Chem will also be employed
in this paper to understand how realistic the models are in simulating the impact of fires on trace gases.

2. Data and Model
2.1. OCO‐2 CO2 Data

Orbiting Carbon Observatory—2 (OCO‐2) measures reflected solar spectra, which can be used to infer atmo-
spheric CO2 levels. OCO‐2 column‐averaged dry air CO2 (XCO2) anomalies are particularly valuable for
accessing extreme CO2 flux anomalies (Feldman et al., 2023). Version 10 Column XCO2 from OCO‐2 with a
good quality flag (Crisp et al., 2004, 2017) was used in this paper. OCO‐2 CO2 retrievals demonstrate consistency
with surface column measurements, with an uncertainty of ∼1.5 ppm (Please refer to Wunch et al., 2017). We
have regridded OCO‐2 CO2 data to a spatial resolution of 2° × 2°.

2.2. Burned Area Data From MODIS

The MODerate Resolution Imaging Spectroradiometer (MODIS) is aboard Terra and Aqua satellites, which
complete 16 orbits per day in sun‐synchronous orbits. MODIS serves as a valuable data source for various
research applications. The MODIS sensor collects spectral data ranging 0.4–14.4 μm. It provides imaginary at a
nominal resolution of 250, 500 m, and 1 km at nadir for different spectral bands (Giglio et al., 2018). Our study
uses monthly mean MODIS burned area data with a spatial resolution of 0.25° × 0.25°.

2.3. SIF From TROPOMI

The TROPOspheric Monitoring Instrument (TROPOMI) is designed to measure CO and CH4 among other at-
mospheric precursors. The ground pixel of TROPOMI is 7 km × 3.5 km at the nadir. TROPOMI spectra at 743–
758 nm are used to estimate SIF (Kohler et al., 2018). A study by Turner et al. (2020) found that SIF mea-
surements from TROPOMI agree withMODIS vegetation indices at annual time scales. TROPOMI SIF retrievals
also demonstrate an excellent agreement with OCO‐2 SIF retrievals. However, TROPOMI SIF has a better
temporal and spatial resolution (Kohler et al., 2018). The TROPOMI SIF has a spatial resolution of 0.05° × 0.05°.
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2.4. CO and CH4 From TROPOMI

TROPOMI uses the shortwave infrared part of the spectrum (2,324–2,338 nm) to retrieve CO data (Landgraf
et al., 2016) and shortwave infrared (2,305–2,385 nm) and near‐infrared (757–774 nm) to retrieve CH4 data
(Veefkind et al., 2012). The initial spatial resolution is 7 × 7 km or 7 × 5.5 km, and we have regridded TROPOMI
CO and CH4 data to a spatial resolution of 0.5° × 0.5°. TROPOMI CO data agrees well with other satellite
(MOPITT) and in‐situ CO data with an uncertainty of ∼2 ppb (Martinez‐Alonso et al., 2020). TROPOMI CH4

agrees well with the TCCON CH4 data with an uncertainty of ∼3 ppb (Lorente et al., 2021).

2.5. Model CO2 From CarbonTracker

CarbonTracker is a global CO2 model that monitors CO2 sources and sinks, with a focus on North America. The
CarbonTracker model (Jacobson et al., 2020) is used in exploring CO2 in California. The CarbonTracker model
uses Transport Model 5 to simulate advection, convection, and diffusion (Jacobson et al., 2020). The GFEDv4.1s
database is linked with the biomass burning CO2 emission calculations (Randerson et al., 2018), while the
Carnegie‐Ames Stanford Approach (CASA) model is used in calculating the biospheric CO2 emissions (Potter
et al., 1993). Satellite vegetation data, weather, and fire are considered in the CASA model to estimate CO2

biospheric emissions (Giglio et al., 2006; Olsen & Randerson, 2004).

2.6. CO From GEOS‐Chem

Goddard Earth Observing System (GEOS)—Chem is used to simulate CO. In the GEOS‐Chem, GFED4 in-
ventory is used for biomass burning. Community Emissions Data System version 2 (CEDS‐v2) inventory is used
as anthropogenic emission data. Data for biogenic emissions is through the Model of Emissions of Gases and
Aerosols from Nature (MEGAN), while the Modern‐Era Retrospective analysis for Research and Applications 2
(MERRA2) reanalysis data from NASA/GMAO is used as the input for the meteorological parameter.

2.7. Other Data Sets

Monthly mean precipitation data from Global Precipitation Climatology Project (GPCP) Version 2.3 data (Adler
et al., 2018) are used in this paper. Monthly mean surface pressure, horizontal winds, and 500 hPa vertical
pressure velocity from the National Centers for Environmental Prediction Reanalysis 2 (NCEP2) are used to
explore the transport. Surface air temperature and relative humidity data from NCEP2 are used to estimate vapor
pressure deficit (VPD) (Albright et al., 2022). The GPCP precipitation data and NCEP2 data are available over the
global domain from January 1979 to the present. Quick Fire Emissions Dataset (QFED) CH4 biomass burning
emissions (Darmenov & da Silva, 2013) are used to analyze CH4 surface emissions in different years. Daily CH4

biomass burning emission data are available at 0.1° × 0.1° (latitude × longitude), covering from February 2000 to
the present.

3. Results
In this paper, we analyze the influence of wildfires on trace gases across California. August‐October is chosen in
this study, for it is the dry season in California and most wildfires occur during these months. We estimate the
GPCP Version 2.3 precipitation over California during the period of August‐October from 2018 to 2020 (Figure
S1 in Supporting Information S1). Averaged precipitation in California during the period of August‐October is
about 7.7 mm/month in 2018, 8.7 mm/month in 2019, and 6.0 mm/month in 2020. Precipitation shows a strong
north‐south gradient. Precipitation is relatively high (∼15–20 mm/month) over the northern part of California,
while it is very low (below 5 mm/month) over the southern part of California.

Associated with low precipitation (Figure S1 in Supporting Information S1), California has more fire activities
during the dry season (August‐October). MODIS burned areas averaged in each fire season (August‐October of
2018, 2019, and 2020) are shown in Figure 1. Figure 1 illustrates significant fire activities in California and
Nevada during the fire seasons, coinciding with the dry season. Fire events appear in both northern and southern
California during August‐October in 2018, 2019, and 2020. The total burned area over California during August‐
October is about 4.6× 105 Ha in 2018, 1.3× 105 Ha in 2019, and 14.4 × 105 Ha in 2020, which is much larger than
the total burned area during the fire‐inactive months (May‐Jun) (0.6 × 105 Ha). Fire activities are relatively weak
in August‐October of 2019, medium in August‐October of 2018, and the strongest in August‐October of 2020.

Geophysical Research Letters 10.1029/2024GL109352
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There are also more burned areas (fire activities) in August‐October 2020 than in August‐October of the previous
2 years (2018 and 2019). More fire activities will release more CO2 into the atmosphere.

In addition to the precipitation, we calculate the VPD from NCEP2 Reanalysis data (Albright et al., 2022) in
August‐October of 2018, 2019, and 2020. VPD, defined as the difference between the saturation vapor pressure
and the actual vapor pressure, is calculated from NCEP2 surface air temperature and relative humidity using
Equation 1 in Barkhordarian et al. (2019). Results are shown in Figure S2 in Supporting Information S1. VPD can
be used to represent how close the air is to saturation. High (low) VPD signifies that the air is more distanced from
(closer to) saturation, indicating arid (humid) air. As shown in Figure S2 in Supporting Information S1, VPD
demonstrates a west‐east gradient. VPD has a lower value over western California, for the air is more humid in the
coastal region. The average value of VPD during August‐October is 20.9 hPa in 2018, 20.1 hPa in 2019, and
25.0 hPa in 2020 over California, which is higher than the VPD value in the non‐fire months (10 hPa). VPD in
California is higher in August‐October 2020 than in August‐October 2018 and August‐October 2019, which
means the air in California is dryer in August‐October 2020. Low (high) VPD values are seen over northern
(southern) California, which is related to the high (low) precipitation values over northern (southern) California.
When the air is dry (high VPD, low precipitation), plants will close their stomata, suppressing the photosynthetic
activities over southern California.

TROPOMI SIF is used to monitor the photosynthetic activities during the dry season (August‐October) from 2018
to 2020. The results are shown in Figure S3 in Supporting Information S1. SIF values are low over most regions of
California, with a slightly high SIF value over the northern part of California (where there are forests and
agriculture), which is also related to the high value of precipitation (Figure S1 in Supporting Information S1) and
low value of VPD (Figure S2 in Supporting Information S1) over those regions. TROPOMI SIF also demonstrates
strong spatial variation, which is related to topography and central California agriculture activity. Averaged SIF
values are 0.30, 0.36, and 0.28 W/m2/sr/μm over California in August‐October of 2018, 2019, and 2020,
respectively. During the dry season, there is less photosynthetic activity in California. SIF values are lower during
August‐October 2020 than the other 2 years, consistent with the lowest precipitation and highest VPD in August‐
October 2020. Lower SIF values in August‐October 2020 also suggest less photosynthetic activity (less CO2

Figure 1. MODIS Burned Area in August‐October of (a) 2018 (b) 2019 and (c) 2020. Units for burned area data are 103 Ha.
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uptake from the biosphere) in 2020 than in the other 2 years, for the fire activities are strongest in 2020. Reduced
photosynthetic activities during the dry season will remove less CO2 from the atmosphere, which can lead to
higher CO2 concentrations in the atmosphere.

OCO‐2 CO2 averaged in August‐October of 2018, 2019, and 2020 are shown in Figure 2. A linear trend has been
extracted from the CO2 data, allowing us to concentrate on the interannual fluctuations of CO2 across different
years. During the fire season (August‐October), more CO2 (1–2 ppm) is released into the atmosphere compared to
the surrounding areas, which is attributed to intensified biomass burning and decreased photosynthesis within the
same time frame. The average CO2 during August‐October in California is about 404.8 ppm in 2018, 404.9 ppm
in 2019, and 405.1 ppm in 2020. Details of averaged CO2 in California are summarized in Table S1 in Supporting
Information S1. For each grid point in Figure 2, there are ∼4,000 OCO‐2 retrievals. The standard error for each
CO2 retrieval is 1.5 ppm (Wunch et al., 2017). Dividing 1.5 ppm by the square root of the number of retrievals, the
error for CO2 data in each grid point is less than 0.05 ppm. In August‐October 2018, there is more CO2 in central
and southern California (Figure 2a), which is related to the biomass burning emission and reduced photosynthetic
activity. At the same time, there is less CO2 in the northern part of California, which is linked to heightened
photosynthetic activities driven by increased precipitation and reduced VPD. High CO2 values are observed
across the entire California region in August‐October 2019 and August‐October 2020.

To evaluate the chemistry‐transport model's ability to simulate elevated CO2 levels over California during the dry
season (August‐October), we employ the CarbonTracker model to estimate CO2 concentrations. We apply the
OCO‐2 CO2 averaging kernel to the model's CO2 vertical profile to get the convolved model CO2. A linear trend is
also extracted from the convolved model CO2 to focus on interannual variations. Detrended and convolved
CarbonTracker CO2 in August‐October of 2018, August‐October of 2019, and August‐October of 2020 are shown
in Figure S4 in Supporting Information S1. The CarbonTracker model can capture high atmospheric CO2 over
California and Nevada, especially Southern California. In August‐October 2018, the model demonstrates high
CO2 concentrations over the central and southern parts of California, similar to OCO‐2 CO2 retrievals (Figure 2a).
In August‐October 2019, model CO2 is high over the majority region of California, similar to those from OCO‐2

Figure 2. OCO‐2 column‐averaged CO2 (XCO2) data in August‐October of (a) 2018 (b) 2019 and (c) 2020. Units for CO2
data are ppm.
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CO2. However, there are some discrepancies between model CO2 and OCO‐2 CO2 over the northern part of
California. As shown in Figure S4c in Supporting Information S1, there is high CO2 over the whole of California
and Nevada, similar to the OCO‐2 column CO2 results in Figure 2c.

Figure S5 presents a scatter plot of OCO‐2 CO2 versus CarbonTracker model CO2 (black symbols). While a linear
relationship exists between these values, the CarbonTracker model underestimates CO2. Scatter plots from the
2018, 2019, and 2020 dry seasons show slopes of 0.42, 0.26, and 0.31, respectively, indicating consistent un-
derestimation. We also plot the difference between the OCO‐2 CO2 and CarbonTracker CO2 in Figure S6 in
Supporting Information S1 in the Supplementary Material. As shown in the spatial pattern of CO2 difference
(Figures S6g‐6i in Supporting Information S1), the model CO2 underestimates OCO‐2 CO2 over California.
Possible causes for this discrepancy might include biases in surface emission inventories or weak vertical
transport within the model simulation. In a sensitivity test, we have adjusted the CO2 surface emission in the
CarbonTracker. Results for the sensitivity test are shown as blue symbols in Figure S5 in Supporting Informa-
tion S1. The slopes for the sensitivity simulation (blue symbols) have improved to 0.81, 0.42, and 0.56,
respectively. The spatial distribution of adjusted CarbonTracker CO2 is shown in Figures S6j‐6l in Supporting
Information S1. There are some improvements in the adjusted CarbonTracker CO2, however, there are still
discrepancies between adjusted CarbonTrack CO2 and OCO‐2 CO2, which suggests that transports are also
important in simulating CO2. Since the CarbonTracker is an offline chemistry‐transport model, we cannot explore
the impact of transports on the model simulation. An interactive dynamical chemistry model is needed to un-
derstand the influence of transports on the CO2 simulation in the future.

To further comprehend the impact of fires and the dry season on CO2 levels, we also examine CarbonTracker
surface CO2 emissions from the biosphere and biomass burning. Biosphere CO2 emissions are depicted in Figure
S7 in Supporting Information S1. Biosphere CO2 emission is defined as respiration minus photosynthesis. When
the biosphere CO2 emission is negative, there is more photosynthesis than respiration and the biosphere removes
CO2 from the atmosphere. In Central and Southern California, reduced photosynthetic activities result in reduced
CO2 uptake from the biosphere. Southern California experienced slightly higher CO2 release in August‐October
2020 compared to the same periods in previous years. In contrast, Northern California's high precipitation and low
VPD promote extensive photosynthetic activities, facilitating the removal of CO2 from the atmosphere. The
averaged CO2 uptake from the biosphere is − 0.7 × 10− 7, − 0.8 × 10− 7, and − 0.4 × 10− 7 mol m− 2 s− 1 for August‐
October of 2018, 2019, and 2020, with the largest reduction of biospheric CO2 uptake in 2020.

CarbonTracker CO2 emissions from biomass burning are displayed in Figure S8 in Supporting Information S1.
The spatial patterns of CO2 biomass burning emissions are similar to those from MODIS burned areas with
California experiencing a substantial increase in biomass burning, particularly in the north. The averaged CO2

biomass burning emissions are 0.6 × 10− 7, 0.2 × 10− 7, and 1.0 × 10− 7 mol m− 2 s− 1 for August‐October of 2018,
2019, and 2020, which is at least a factor of 10 increase compared with CO2 biomass burning emission during the
fire‐inactive season (0.02 × 10− 7 mol m− 2 s− 1). The enhanced CO2 absorption by the biosphere in Northern
California (Figure S7 in Supporting Information S1) offsets the CO2 emissions from biomass burning (Figure S8
in Supporting Information S1), explaining why OCO‐2 column CO2 concentrations are not significantly higher in
the North compared to the South (see Figure 2).

NCEP2 surface pressure and horizontal winds are estimated for the periods of August‐October in 2018, 2019, and
2020 (Figure S9 in Supporting Information S1). Low pressure is seen over Nevada and relatively high pressure
over California. Winds blow from northern California to southern California, which will help to maintain high
pollutants over southern California. We also calculate NCEP2 500 hPa vertical pressure velocity (dP/dt) over
California (Figure S10 in Supporting Information S1). The positive (negative) value of vertical pressure velocity
means sinking (rising) air. Sinking air is seen over California, which can trap pollutants in California.

With a lifetime of 1–2 months, CO is often used as a reliable tracer for biomass‐burning emission estimates (Jiang
et al., 2021; Yurganov et al., 2008). It is predominantly released during the smoldering phase (Andreae &
Merlet, 2001). Figure 3 investigates the influence of fire on TROPOMI CO levels during August‐October for the
years 2018, 2019, and 2020. The average CO is 86 ppb over California in August‐October 2018. Elevated CO
concentrations are noticeable over Northern and Central California compared to Southern California in August‐
October 2018. The levels remain high in August‐October 2019, averaging 84 ppb across California. In August‐
October 2020, CO concentrations rise to approximately 107 ppb (substantially higher than the other 2 years),
attributable to increased fire activities (reflected by a larger burned area, 14.4 × 105 Ha) in 2020 compared to

Geophysical Research Letters 10.1029/2024GL109352
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4.6 × 105 Ha in 2018 and 1.3 × 105 Ha in 2019, as shown in Figure 1. The TROPOMI CO averaging kernel is
applied to the GEOS‐Chem model's CO vertical profile. The resulting convolved model CO is depicted in Figure
S11 in Supporting Information S1. Analogous to TROPOMI CO, higher GEOS‐Chem CO concentrations are
observed over Northern California in 2018, averaging 77.8 ppb. The GEOS‐Chem model shows a low CO
concentration of approximately 72.2 ppb in August‐October 2019, which increases to around 79.1 ppb in August‐
October 2020. It should be noted that the GEOS‐Chem model's CO concentrations are consistently lower than
those indicated by TROPOMI over California. The underestimation of the CO level of GEOS‐Chem might be
attributed to the surface emission inventories and vertical transports in the GEOS‐Chem.

Figure S12 in Supporting Information S1 presents a scatter plot comparing TROPOMI CO and GEOS‐Chem
model CO (black symbols) over California. In August‐October 2018, the GEOS‐Chem model accurately simu-
lates Column CO with a slope of 0.97. However, it underestimates column CO in August‐October 2019 and
August‐October 2020, with slopes of 0.60 and 0.44, respectively. Differences between TROPOMI CO and
GEOS‐Chem CO are shown in Figure S13 in Supporting Information S1. As shown in Figures S13g‐13i in
Supporting Information S1, GEOS‐Chem model underestimates TROPOMI CO in most regions of California. In
a sensitivity test, we have adjusted the CO biomass burning emission in the GEOS‐Chem. The slopes of the
sensitivity test (blue symbols) have improved to 0.99, 0.68, and 0.76, respectively. In Figure S14 in Supporting
Information S1, we investigate CO biomass burning emissions from GFED4. Notably, high CO biomass burning
emissions are observed over California, particularly in the north. Emissions are lower in August‐October 2019
compared to August‐October 2018 and August‐October 2020, aligning with the GEOS‐Chemmodel's CO results.

Ranked as the second most important greenhouse gas, CH4 contributes considerably to climate forcing
(IPCC, 2007). Biomass burning is an important source of methane. Therefore, we have also investigated
TROPOMI CH4 concentrations during California's dry season (August‐October). These findings are presented in
Figure S15 in Supporting Information S1. High CH4 levels are observed throughout California during August‐
October across all 3 years, attributable to substantial CH4 emissions from both biomass burning and agricul-
ture. CH4 concentrations are slightly higher in August‐October 2020 (1862 ppb) than in 2018 (1855 ppb) and
2019 (1852 ppb). QFED CH4 biomass burning emissions are estimated for August‐October in 2018, 2019, and

Figure 3. TROPOMI CO data in August‐October of (a) 2018 (b) 2019 and (c) 2020. Units for CO data are ppb.
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2020 in Figure S16 in Supporting Information S1. This figure illustrates that both Northern and Southern Cali-
fornia release CH4 from biomass burning, with a greater source of CH4 biomass burning in 2020 than in the
preceding years. Over the 3 years, the highest CH4 concentration is noted in Central California, primarily due to
agricultural emissions, including livestock farming and croplands (Maasakkers et al., 2016).

4. Conclusion
The impacts of the California wildfire on CO2, CO, and CH4 are explored in this paper. For 2018, 2019, and 2020,
the combined monthly averages of August‐October are considered, for it corresponds to the dry season in Cal-
ifornia and exhibits the highest levels of fire activities. The average GPCP precipitation is low over California in
August‐October, with slightly high precipitation over the northern part of California and extremely low pre-
cipitation (<5 mm/month) over the southern part of California. Associated with low precipitation, the air is arid
and further away from saturation (high VPD) in Southern California, reducing photosynthetic activities.

Total column CO2, as retrieved by OCO‐2, shows elevated CO2 concentrations in California during the dry season
(August‐October). This aligns with MODIS data showing a large, burned area during August‐October of 2018,
2019, and 2020. Relatively high precipitation is seen over northern California, while low precipitation is seen over
southern California in August‐October of 2018, 2019, and 2020 (Figure S1 in Supporting Information S1). During
dry conditions (low precipitation), plants close the stomata, reducing the photosynthetic activity in southern
California. As an indicator of photosynthetic activities, SIF values are high in northern California and low in
southern California (Figure S3 in Supporting Information S1). In southern California, reduced photosynthetic
activities reduce CO2 uptake from the biosphere, leading to more CO2 in the atmosphere (Figure S7 in Supporting
Information S1). There is more burned area in northern California (Figure 1), which will release more CO2 from
the biomass burning to the atmosphere (Figure S8 in Supporting Information S1). The enhanced CO2 emissions
from biomass burning offsets the CO2 absorption by the biosphere in northern California, explaining why column
CO2 concentrations are not significantly higher in the North compared to the South. Implementing the Car-
bonTracker model, developed to simulate CO2 variability in California, indicates that nearly the entirety of
California experienced high CO2 levels during August‐October of 2018, 2019, and 2020. The year 2020 saw the
highest modeled CO2 concentrations.

Given that CO is a reliable tracer for biomass burning, TROPOMI CO data also reveal high CO concentrations in
California during the dry seasons (August‐October) of 2018, 2019, and 2020, peaking in 2020. While the GEOS‐
Chem model can simulate high CO concentrations in California during these periods, it consistently estimates
lower concentrations than TROPOMI CO. Alongside CO2 and CO, it's also noteworthy that TROPOMI CH4

concentrations are elevated across California during the dry season.

This study shed light on the impact of fires on trace gases, enhancing our understanding of the feedback cycle
between wildfires and greenhouse gases (e.g., Fung et al., 2005; Jiang et al., 2023). It can also help us assess the
potential impact of future wildfires on carbon budgets and climate trends. As highly effective greenhouse gases,
CO2 and CH4 are critical in global warming. Understanding the emissions of these gases is crucial for assessing
their contributions to the dynamic climate system. Furthermore, CH4 and CO are detrimental gases with both
immediate and long‐term effects on air quality and public health. CH4 can impact human health and air quality by
serving as a precursor to tropospheric ozone (Mar et al., 2022). Analyzing the levels of the emission of these
harmful gases (CH4 and CO) from wildfires aids in the assessment of associated health risks. We anticipate that
our investigations into these greenhouse gases (CO2 and CH4) can enhance our comprehension of climate change.
Moreover, it's observed that numerical models tend to underestimate CO2 and CO levels during August‐October,
which can be attributed to biases in surface emission inventories and transports in the models. The data gathered
from satellite retrievals can be instrumental in refining and constraining these numerical models. While we focus
on the southwestern part of the US, the insights gained from this study have broader relevance because wildfires
are a global phenomenon. In the future, we will explore the impacts on trace gases before, during, and after fires,
using geostationary satellite data with high spatial and temporal resolution as it becomes available.
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Data Availability Statement
We downloaded OCO2 CO2 data (Crisp et al., 2017) at https://disc.gsfc.nasa.gov/datasets?keywords=oco‐
2&page=1. TROPOMI data (Kohler et al., 2018; Landgraf et al., 2016; Veefkind et al., 2012) are from https://
search.earthdata.nasa.gov/search?fi=TROPOMI. Precipitation data (Adler et al., 2018) are from https://psl.noaa.
gov/data/gridded/data.gpcp.html. MODIS data (Giglio et al., 2018) are from http://modis‐fire.umd.edu/.
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