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A B S T R A C T   

The temperature structure of a giant planet was traditionally thought to be an adiabat assuming convective 
mixing homogenizes entropy. The only in-situ measurement made by the Galileo Probe detected a near-adiabatic 
temperature structure within one of Jupiter’s 5μm hot spots with small but definite local departures from 
adiabaticity. We analyze Juno’s microwave observations near Jupiter’s equator (0– 5 oN) and find that the 
equatorial temperature structure is best characterized by a stable super-adiabatic temperature profile rather than 
an adiabatic one. Water is the only substance with sufficient abundance to alter the atmosphere’s mean mo
lecular weight and prevent dynamic instability if a super-adiabatic temperature gradient exists. Thus, from the 
super-adiabaticity, our results indicate a water concentration (or the oxygen to hydrogen ratio) of about 4.9 
times solar with a possible range of 1.5– 8.3 times solar in Jupiter’s equatorial region.   

1. Introduction 

The Microwave Radiometer (MWR) onboard the Juno spacecraft has 
measured the brightness temperatures of Jupiter’s thermal emission at 
six different microwave frequencies ranging from 0.6 to 22 GHz that 
cover a pressure range from ~250 bars to 0.5 bar (Janssen et al., 2017). 
One of the unique advantages of the MWR is its capability to measure the 
angular dependence of the thermal emission, known as limb darkening, 
which provides important additional information that is inaccessible 

from ground-based radio observations. We define limb darkening as the 
fractional reduction (R) of the microwave radiance (which we express as 
brightness temperature) from nadir viewing (Tb,nadir) to limb viewing 
(Tb,θ) at emission angle θ, i.e. Rθ =

(
Tb,nadir − Tb,θ

)
/Tb,nadir. So, R45 de

notes the limb darkening evaluated at a 45-degree emission angle. Initial 
analyses of the MWR data have yielded the concentration of ammonia as 
a function of latitude and altitude using the nadir brightness tempera
ture only and the abundance of water in Jupiter’s equatorial zone (EZ) 
assuming a moist adiabatic temperature profile (Li et al., 2017, 2020), i. 

* Corresponding author. 
E-mail address: chengcli@umich.edu (C. Li).  

Contents lists available at ScienceDirect 

Icarus 

journal homepage: www.elsevier.com/locate/icarus 

https://doi.org/10.1016/j.icarus.2024.116028 
Received 30 September 2023; Received in revised form 6 February 2024; Accepted 1 March 2024   

mailto:chengcli@umich.edu
www.sciencedirect.com/science/journal/00191035
https://www.elsevier.com/locate/icarus
https://doi.org/10.1016/j.icarus.2024.116028
https://doi.org/10.1016/j.icarus.2024.116028
https://doi.org/10.1016/j.icarus.2024.116028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.icarus.2024.116028&domain=pdf


Icarus 414 (2024) 116028

2

e. a temperature profile that is sub-adiabatic because of latent heat 
release during water condensation. 

Although a moist adiabatic temperature profile was established by 
observing Earth’s tropical climate (Xu and Emanuel, 1989), the Galileo 
Probe Atmospheric Structure Instrument (ASI) found significant de
partures from an ideal adiabat at Jupiter (Magalhães et al., 2002). 
Specifically, a sub-adiabatic temperature gradient was found between 
0.5 and 1.7 bars, 3 to 8.5 bars and 14 to 20 bars with a static stability of 
0.1– 0.2 K/km. Given a scale height of ~30 km for Jupiter’s atmosphere, 
the observed static stability at the Galileo Probe site would imply a 
departure from the dry adiabatic temperature profile by 3– 6 K between 
3 and 10 bars, and 10 to 20 K between 1 and 20 bars (3 scale heights). In 
contrast, a similar static stability on Earth would only lead to a tem
perature anomaly of around 1 K between the top and bottom of the 
troposphere due to a much thinner atmosphere on Earth. 

Hence, the deviation from adiabaticity is potentially detectable by 
the Juno microwave radiometric observation because the instrument 
thermal noise is <1 K and an absolute calibration at pressures consid
ered here (1– 20 bars) is conservatively determined to be around 2% 
(Janssen et al., 2017). Fig. 1 shows calculations of brightness tempera
tures and limb darkening at six Juno MWR channels for three idealized 
Jupiter’s atmospheric models at the equator: a sub-adiabatic model, a 
dry adiabatic model and a super-adiabatic model. Each model assumes a 
homogeneous atmospheric composition in thermodynamic equilibrium 
without cloud condensates and the non-adiabatic part of the atmosphere 
is restricted to be between 1 and 20 bars at ±0.15 K/km. At pressures 
higher than 20 bars, the atmospheric temperature is assumed to be dry 
adiabatic. 

These calculations show that brightness temperatures and limb 
darkening respond approximately linearly to the change in the 

temperature gradient such that a super-adiabatic model exhibits de
viations in these parameters relative to an adiabat almost exactly the 
opposite of a sub-adiabatic model. The brightness temperatures in a 
super-adiabatic model are consistently colder across all frequencies 
compared to a dry adiabatic model, with the most significant difference 
observed for the 5.2-GHz channel. In contrast to the brightness tem
perature, the limb darkening anomalies change sign between the 10- 
GHz and the 2.6-GHz channels, because limb darkening is sensitive to 
the change of brightness temperature with pressure. 

Brightness temperature is determined by the kinetic temperature of 
the atmosphere and the concentration of ammonia and water vapor. At 
higher altitudes (p < 0.7 bar), the concentration of ammonia vapor is 
limited by its saturation vapor pressure, dependent solely on tempera
ture. Therefore, an increased temperature gradient across the ammonia 
condensation level suggests a larger ammonia gradient as well, which 
contributes mainly to the limb darkening anomaly observed at the 10- 
GHz channel. On the other hand, at lower altitudes (p > 5 bar), the 
concentration of ammonia is nearly constant in our model. The 2.6-GHz 
channel predominantly senses the kinetic temperature gradient, and its 
limb-darkening effect contrasts with the ammonia gradient sensed by 
the 10-GHz channel. At the 5.2-GHz channel, the above two effects 
approximately cancel one another, resulting in a minimum in the limb- 
darkening anomaly among these three channels. 

We can perform a similar exercise for changing the vertical gradient 
of ammonia concentration. Still using the 20-bar pressure level as the 
base below which the atmosphere becomes homogenous, we try three 
simple models of ammonia profiles, homogenous (equilibrium conden
sation), positive gradient and negative gradient with height. Based on 
prior studies (Li et al., 2017, 2020), both positive and negative gradients 
have been identified in Jupiter’s atmosphere between 1 and 20 bars at 

Fig. 1. (A) Three idealized Jovian thermal models, dry adiabatic (black), sub-adiabatic (orange) and super-adiabatic (blue). The non-adiabatic temperature gradient 
is ±0.15 K/km. The grey dashed lines show the contribution functions of 10, 5.2, 2.6, and 1.25 GHz channels (from top to bottom). (B) Nadir brightness temperature anomalies 
at six Juno MWR channels. From top to bottom, they are at 22 GHz, 10 GHz, 5.2 GHz, 2.6 GHz, 1.25 GHz, and 0.6 GHz, respectively. The horizontal error bars show a 
conservative 2% uncertainty. The contribution functions for 22 GHz and 0.6 GHz peak at pressures outside the range of the graph. (C) Limb-darkening anomalies 
(evaluated at a 45-degree emission angle). The horizontal error bars show a 0.1% instrument noise level (Janssen et al., 2005, 2017). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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varying latitudes. Specifically, the equatorial region of Jupiter appears 
to exhibit a positive ammonia gradient, while other latitudes display a 
negative gradient. Examining the forward calculation results shown in 
Fig. 2, the model with a negative ammonia gradient has a similar effect 
as a sub-adiabatic temperature profile in terms of brightness tempera
ture and limb darkening observations. This demonstrates a degeneracy 
between the ammonia gradient and the temperature gradient that 
potentially limits what we can conclude from the spectral inversion 
study. 

The real atmosphere of Jupiter is far more complicated than the 
simple idealized model presented in Figs. 1 and 2, and the inverse 
problem of atmospheric sounding is often termed “ill-posed” in inferring 
the atmospheric state using the given radiometric observations (Rodg
ers, 2000). This means that the solution is non-unique (there can be 
multiple possible solutions that could lead to the same spectra) and is 
subject to instability (small changes in the observed spectra could 
potentially lead to vastly different outcomes of the inferred atmospheric 
state). To address these issues, prior constraints must be incorporated 
into the inversion problem. They are essential additional pieces of in
formation and assumptions that we use to bound the solution space and 
guide the solution toward a stable and objective answer with uncer
tainty quantification. The result is interpreted as the balance between 
the observational constraint and the prior constraint. Incorrect or overly 
restrictive prior constraints could potentially bias the solution or elim
inate the true state from the feasible solution set. 

In this article, we deem that the “adiabatic assumption” employed in 
previous radio inversions is too restrictive and that may prevent us from 
inferring the true condition of Jupiter’s atmosphere, and by extension, 
those of other giant planets. As stated previously, the Galileo Probe 
detected a non-adiabatic temperature gradient, although in an anoma
lous “hot spot”. The thermodynamics of Jupiter’s weather layer present 
a complex system, mainly due to the phase transitions of water and 
ammonia. This phase transition results in the release of latent heat, 

which reduces the temperature gradient during a reversible adiabatic 
ascent (the moist adiabatic temperature gradient) (Holton, 1973). More 
importantly, a humid air parcel on Jupiter is heavier than a dry air 
parcel because water molecules are heavier than the background at
mosphere of molecular hydrogen and helium. The gradient of water 
vapor caused by condensation and the subsequent change in the mean 
molecular weight result in the temperature gradient being potentially 
steeper than any dry adiabatic temperature profile across the water 
condensation layer (Friedson and Gonzales, 2017; Guillot et al., 1994a, 
1994b; Leconte et al., 2017; Li and Ingersoll, 2015). This is a unique type 
of temperature profile in the Jovian atmosphere that does not exist on 
Earth. Despite this, the Jovian atmosphere can remain statically stable 
because the lower atmosphere (below the water cloud base) has a higher 
mean molecular weight than the upper atmosphere (above the water 
cloud) which has a lower mean molecular weight. 

Thus, neither theoretical nor observational constraints compellingly 
support the assumption of strict adiabaticity for Jupiter’s atmosphere. 
We therefore relax the “adiabatic” assumption in this work and proceed 
to utilize the possible super-adiabaticity in Jupiter’s EZ to better 
constrain the water abundance in the deep atmosphere. This is possible 
because a super-adiabatic temperature gradient must be stabilized by a 
change of mean molecular weight, and water is the only condensable 
vapor that is abundant and heavy enough to change the mean molecular 
weight of the atmosphere significantly. Ammonia condensation could 
also alter the mean molecular weight of the atmosphere but by a much 
smaller amount, owning to its much lower abundance. 

In what follows, we discuss the data processing steps in Section 2 and 
spectral inversion method and the prior constraints we used in the 
spectral inversion in Section 3, followed by the derived temperature and 
ammonia profiles with statistics in Section 4. In Section 5, we infer the 
deep-water abundance based on the inferred super-adiabatic tempera
ture gradient. Section 6 concludes and summarizes the findings of this 
research. Finally, Section 7 discusses the caveats of this study and how it 

Fig. 2. Similar to Fig. 1 but for three Jovian ammonia profile models, equilibrium condensation (black), positive ammonia gradient with height (blue) and negative 
ammonia gradient (orange). The pressure level has been extended to 0.5 bar to show the gradient of ammonia vapor due to condensation and the contribution 
function of the 22 GHz channel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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may be improved in the future. We also offer new insights on the 
physical implications of the Galileo Probe observation, the only in-situ 
measurement available for Jupiter’s tropospheric temperature from 1 
to 20 bars of pressure. 

2. Juno MWR data processing 

Jupiter’s thermal emissions at six radio wavelengths were recorded 
from pole to pole at various emission angles by the Juno spacecraft while 
it scans the planet during each perijove encounter. The observed 
quantity at each microwave channel is the antenna temperature, which 
is the brightness temperature emitted by the atmosphere (or occasion
ally non-atmospheric source) convolved with the beam pattern of each 
antenna. The Juno MWR data processing pipeline removes the possible 
synchrotron contamination and determines a parameterized three- 
coefficient formula of the emission-angle-dependent brightness tem
perature of Jupiter’s atmosphere at approximately 0.5-degree resolution 
in latitude (Oyafuso et al., 2020). The formula is: 

Tb(μ) = c0 − c1
1 − μ
1 − μ2 +

c2

2
(μ − μ*)(1 − μ)

(1 − μ*)
, (1)  

in which μ is the cosine of the emission angle and, μ* = 0.8, corre
sponding to an emission angle of 37∘. In this form, the coefficient c0 
measures the nadir brightness temperature; c1 measures the absolute 
limb darkening (in unit K) at an emission angle of 37∘; c2 represents an 
additional reduction of the brightness temperature at μ = 0.6 (53∘ 

emission angle) over a linear extrapolation by c0 and c1. Eq. (1) has been 
validated over a variety of atmospheric conditions to adequately 
describe the emission angle dependence of the limb darkening curve 
from nadir looking up to 45∘ emission angle, while we find that the 
traditional two-parameter power-law approximation (Tb(μ) = Tb0μp) is 
inadequate to describe the limb darkening at the precision of Juno 
MWR’s observations (Oyafuso et al., 2020). 

Even for a homogenous atmosphere, the coefficients c0, c1 and c2 
change with latitude because the planet’s effective gravitational accel
eration is lesser at the equator and greater at the poles. For a given 
pressure interval, a larger gravitational acceleration yields a smaller 
photon path length and thus larger brightness temperature. The differ
ence in the nadir brightness temperature (c0) can be >10% between the 
equator and the pole in the 0.6-GHz channel. Before performing a 
spectral inversion, we (1) preprocess the Juno/MWR brightness tem
peratures by flagging and masking anomalies that may contain non- 
thermal emissions (such as auroral emissions) or large discrete fea
tures (such as the Great Red Spot) that appear only in one perijove and 
not the others; (2) project the observations from different latitudes to the 
equator by correcting for the effects of latitudinally varying gravita
tional acceleration; (3) obtain a globally averaged brightness tempera
ture and limb darkening by averaging over the observations from 
Perijove 1 to Perijove 12; (4) contrast the equatorial observation (0– 5 
oN) with the global mean and obtain the equatorial anomaly with 
respect to the global mean. We focus on the Juno/MWR observations of 
Jupiter’s atmosphere from Perijoves 1 to 12 because the first few orbits 
are the best to characterize Jupiter’s equatorial region as the perijove 
latitude is closest to the equator. The resulting global-mean brightness 
temperature, limb darkening at a 45-degree emission angle and the 
equatorial anomaly with respect to the global mean are summarized in 
Table 1. 

Inspecting the last two columns of Table 1, one finds that (1) The EZ 
appears colder than the global mean at all microwave frequencies and 
(2) The 2.5-GHz channel shows a positive limb darkening anomaly (+
0.28%) and the 10-GHz channel shows a negative limb darkening 
anomaly ( − 0.78%). These contrasts imply that the EZ is either enriched 
in ammonia vapor or its temperature structure is significantly different 
from elsewhere in Jupiter. In particular, the changing sign between the 
limb darkening values at 2.6-GHz and 10-GHz aligns with what is 

expected from a super-adiabatic temperature structure (Fig. 1, blue 
line). However, the non-homogeneous distribution of ammonia can 
confound the inference of atmospheric temperature gradient due to the 
ammonia-temperature degeneracy. Thus, we would need to consider 
both the non-homogenous distribution of ammonia and the non- 
adiabatic temperature gradient for a comprehensive inversion of at
mospheric state given Juno/MWR observations. 

We aim to determine the potential temperature difference between 
the upper atmosphere and the deep interior of Jupiter, specifically 
investigating whether the temperature gradient follows a dry adiabat. 
To achieve this, we need two critical pieces of information. 

The first is a value of the deep entropy of Jupiter’s interior. This is 
conventionally expressed using potential temperature, denoted as θ1bar, 
which refers to the temperature that an air parcel would reach if dry- 
adiabatically decompressed to a 1-bar pressure level from some deeper 
level. Yet, given the significant variation of Jupiter’s specific heat 

cp

(
T, fpara

)
over the large range of kinetic temperatures between 1 and 

300 bars and over the variation of the para‑hydrogen fraction fpara 

(Conrath and Gierasch, 1984), the conventional expression for potential 
temperature commonly adopted in meteorology (Emanuel, 1994) 
cannot be used here (Gierasch et al., 2004). Instead, for a diagnostic 
purpose, we present a definition of potential temperature in terms of 
small departure with respect to a dry adiabatic temperature profile, 
Tad(p). It follows that, for small departures, δT(p)/Tad(p) ≈ δθ(p)/θ0, 
where θ0 is a reference constant, δT(p) is the temperature anomaly and 
δθ(p) is the potential temperature anomaly. We demand that the deep 
atmosphere is isentropic, i.e. δθ(p) = 0 everywhere. So, the deep isen
trope is at θ = θ0. 

To close approximation, θ(p) ≈ θ0 + δθ(p) = θ0
T(p)

Tad(p) ≡ θ̃(p), and we 

refer θ̃(p) the adiabatically referenced potential temperature. θ̃ possess the 
following properties (1) a constant θ̃ is a dry adiabatic temperature 
profile extended from the deep atmosphere. (2) θ̃ directly reflects tem
perature profile. If θ̃ decreases with height, the temperature profile is 
super-adiabatic. Conversely, if θ̃ increases with height, the temperature 
profile is sub-adiabatic. (3) For an atmosphere with uniform heat ca
pacity, θ̃ converges to the conventional definition of θ. We emphasize 
that θ̃ only serves as a diagnostic purpose. When integrating the adia
batic temperature gradient, we consider the temperature dependence of 
the heat capacity and the variation of the para‑hydrogen fraction. We 
have tested both equilibrium hydrogen and normal hydrogen and found 
negligible differences in the derived θ̃(p) because Tad(p) for these 
different choices is very nearly the same at pressures greater than ~3 
bars. When assessing the stability of the atmosphere, we compare the 
density of two air parcels directly by lifting the air parcel at a higher 
pressure to the pressure level of the other air parcel. Due to the close 
relation between ̃θ and θ, from now on, we will omit the tilde symbol on 
top of θ̃ and address the adiabatically referenced potential temperature 
as the potential temperature. 

The second is the kinetic temperature at the 1-bar pressure level of 
Jupiter’s atmosphere, denoted as T1bar. If T1bar > θ1bar, the atmosphere is 
sub-adiabatic; if T1bar < θ1bar, the atmosphere is super-adiabatic, and if 

Table 1 
Globally averaged brightness temperatures, limb darkening and equatorial 
anomalies.  

Frequency 
(GHz) 

Global Tb (K) Global R45 

(%) 
Equatorial 
δTb (K) 

Equatorial 
δR45 (%) 

0.6 841.1 ± 1.38 14.11 ± 0.11 − 39.4 ± 2.4 1.1 ± 0.1 
1.25 451.6 ± 0.94 9.63 ± 0.056 − 33.4 ± 2.0 − 0.08 ± 0.1 
2.6 325.9 ± 0.38 6.78 ± 0.037 − 28.3 ± 2.7 0.28 ± 0.16 
5.2 244.6 ± 0.32 5.76 ± 0.024 − 22.4 ± 3.0 − 0.13 ± 0.16 
10 189.6 ± 0.45 4.21 ± 0.041 − 12.7 ± 2.8 − 0.78 ± 0.25 
22 140.6 ± 0.21 1.27 ± 0.036 − 3.1 ± 1.0 0.01 ± 0.29  
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T1bar = θ1bar, the atmosphere is dry adiabatic. Both θ1bar and T1bar can be 
functions of latitude, meaning that different locations on Jupiter may 
have different static stability, as suggested by the general circulation 
model of giant planets (Schneider and Liu, 2009). From ground-based 
infrared observation, it is well established that T1bar is not uniform on 
Jupiter: the EZ is the coldest place and the North Equatorial Belt (NEB) is 
the warmest place (Fletcher et al., 2016; Gierasch et al., 1986). As the 
case with Earth’s atmosphere, T1bar is modulated by atmospheric cir
culation and radiative processes in the upper troposphere and strato
sphere (Li et al., 2018b). Yet, θ1bar (as used here to tag the reference for 
the deep isentrope) is generally regarded as uniform. This is because 
even a very small latitudinal difference in potential temperature along 
isobars would result in a vastly amplified thermal wind when integrated 
over the ~2000 km depth of the zonal circulation (Galanti et al., 2021). 
Although the longest wavelength channel is at 50 cm (0.6 GHz), which 
probes hundreds of bars of pressure, the 1.2-GHz channel (25 cm) is the 
best choice to determine the deep entropy because it is unaffected by the 
plasma absorption (Bhattacharya et al., 2023) and the ammonia con
centration is less variable over latitude at the corresponding pressure 
range (30– 50 bars) compared to shallower levels. 

In summary, the 0.6-GHz channel is generally used for determining 
the abundance of alkali metals through the ionized electrons. The 1.2- 
GHz channel is for the deep ammonia concentration and the deep en
tropy. The 1.2– 10-GHz channels are used to characterize the profiles of 
ammonia and temperature and the 22-GHz channel is used to determine 
the ammonia relative humidity near 0.5 bar pressure level. 

3. Atmospheric profile inversion method 

Almost all previous studies on the atmospheric profile inversion from 
radio observations assume a static, globally uniform and adiabatic 
temperature profile extrapolated downward from T = 166 K at the 1 bar 
pressure level (Li et al., 2017; Moeckel et al., 2023; de Pater et al., 2019). 
This is a fair assumption for low-precision measurements. As the pre
cision of limb darkening reaches 0.1% and the precision of brightness 
temperature is <1 K, a globally uniform and adiabatic temperature 
structure is no longer appropriate. As demonstrated in Fig. 1, a 0.15 K/ 
km non-adiabatic temperature yields a detectable signal in both nadir 
brightness temperature and limb darkening observations. Thus, we 
allow both the kinetic temperature and ammonia concentration to vary 
in the vertical. 

To leverage the stability of the Juno/MWR observation, meaning 
that the relative precision is much higher than the absolute accuracy, we 
employ a two-stage differential fitting method, as has been done in 
fitting Saturn’s radio observation using the Very Large Array (VLA) (Li 
et al., 2023). The first stage fits the global mean spectra of Jupiter’s 
atmosphere based on absolute values of brightness temperature and 
limb darkening (assuming 2% calibration uncertainty and 0.5 K mea
surement noise) and the second stage fits the equatorial anomaly based 
on the differential observation shown in the last two columns of Table 1. 
The theory of differential fitting is derived in Li et al. (2023) for the radio 
observation of Saturn’s atmosphere and we use it here for the observa
tion of Jupiter. 

The fitting in the first stage establishes the value of the deep entropy, 
θ1bar and the deep ammonia concentration, XNH3 because these two 
quantities are assumed to be globally uniform. Before the Juno mission, 
the Galileo Probe in-situ measurement and the Voyager radio occulta
tion experiments were used to estimate the value of θ1bar. Assuming a dry 
adiabatic thermal structure, the deep entropy is θ1bar = T1bar = 166.1 ±

0.8 K (Seiff et al., 1998; Young et al., 1996). The concentration of 
ammonia on Jupiter has also been directly measured by the Galileo 
Probe mass spectrometer (566 ± 216 ppmv) (Wong et al., 2004), indi
rectly inferred by the radio attenuation of the Probe signal 
(700 ± 100 ppmv) (Folkner et al., 1998) and also from the preliminary 
spectral inversion from the Juno/MWR (362 ± 33 ppmv) based on nadir 
brightness temperature only (Li et al., 2017). Curiously, the nominal 

value obtained by the previous Juno/MWR inversion is inconsistent 
with the lower limit of the value obtained by the Galileo Probe mass 
spectrometer. Such a discrepancy can be attributed to an inverted 
ammonia gradient (higher ammonia concentration at higher altitudes) 
found by the ammonia profile retrieval near Jupiter’s equator (Li et al., 
2020; Moeckel et al., 2023). Consequently, previous Galileo Probe 
measurements cannot provide a reliable estimate of θ1bar or XNH3 if we 
allow a non-adiabatic temperature gradient and accept the inverted 
ammonia gradient near the equator (Section 7 discusses the intricacies 
of interpreting the Galileo Probe observation). We will regard these two 
parameters as unknown and estimate them from Juno/MWR observa
tions summarized in Table 1. 

The fitting in the second stage establishes the temperature gradient 
via differential fitting. Differential fitting bypasses the calibration un
certainty and measures atmospheric variability. Similar to (Li et al., 
2023), The χ2 of the differential fitting for each MWR channel is defined 
as: 

χ2 =

(
δTmodel

b − δTobs
b

σ
(
δTobs

b

)

)2

+

(
δRmodel

45 − δRobs
45

σ
(
δRobs

45

)

)2

, (2)  

where δTmodel
b = Tmodel

b,eq − Tmodel
b,global represents the modeled difference in 

nadir brightness temperature between the EZ and the global mean; 
δRmodel

45 = Rmodel
45,eq − Rmodel

45,global represents the modeled difference in limb 
darkening at a 45◦ emission angle between the EZ and the global mean. 
δTobs

b and δRobs
45 are the observed brightness temperature and limb 

darkening difference between the EZ and the global mean, where Tb and 
R45 come from radiative transfer calculation given the profiles of tem
perature and ammonia concentration. Differential fitting is useful for 
contrasting two locations, such as the global mean and the EZ. Later, we 
will gather the spectral inversion statistics and demonstrate that EZ has a 
steeper temperature gradient than the global mean. 

There are several ways to perform spectral inversion and the choice 
is based on the type of measurement and the sensitivity of the instru
ment. For example, spectral inversions for radio observations of giant 
planets using VLA were often done by hand-picking several vertical 
levels and adjusting the ammonia concentration manually (de Pater 
et al., 2001, 2016, 2019; Sault et al., 2004). As the spatial resolution, 
spectral resolution and instrument precision improves, parameterized 
inversions were adopted (Li et al., 2020; Moeckel et al., 2023) in 
studying Jupiter’s ammonia concentration using Juno/MWR observa
tions. In particular, (Li et al., 2020) assumed that the ammonia profile 
q(p) at Jupiter’s equator behaves like the functional form of: 

q(p) = A+Bexp
(

−
p − pD

Δp

)

, (3)  

and invert for the four parameters, A,B, pD and Δp. Moeckel et al. (2023) 
parameterized the ammonia profile q(p) as: 

q(p) = qdeep − Hmix(lnPb − lnP), (4)  

and invert for the three parameters, qdeep, Hmix and Pb. 
Eqs. (3) and (4) are restrictive in the representation of a realistic 

ammonia profiles, because any ammonia profile that does not follow the 
functional form of (3) or (4) will be excluded from the solution set and 
thus bias our solution of atmospheric structure. Yet, it is impossible to 
enumerate all functions because the atmospheric profile has an infinite 
degree of freedom. The most sophisticated model constructs a contin
uous atmospheric profile level-by-level as has been done in Li et al. 
(2017). Here, we further improve the way of constructing a smooth at
mospheric profile by Gaussian Process, which yields smooth atmo
spheric profiles with better uncertainty quantification than a piecewise 
linear construction. 

Let Z be the log-pressure coordinate defined as: 

C. Li et al.                                                                                                                                                                                                                                        
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Z = H0log
(

p0

p

)

, (5) 

Where H0 is a reference atmosphere scale height and p0 is the 
reference pressure such that Z = 0 at p = p0. A uniform grid in Z means 
that the pressure is sampled uniformly in log space. Let T(Z) be the 
vertical temperature anomaly and NH3(Z) be vertical ammonia anom
aly. We sample N layers of the atmosphere and connect them via a 
Gaussian interpolation process. Specifically, we use N = 8 in our spec
tral inversion with maximum and minimum pressure boundaries at 100 
and 0.5 bars, respectively. The sampling pressure levels are at 100, 46.9, 
22.0, 10.3, 4.84, 2.27, 1.07, and 0.5 bars respectively. These numbers 
are guided by the number of microwave channels, the spread of their 
weighting functions and the density scale height in the physical space. 
Choosing 8 levels yields roughly one sampling point per scale height. No 
improvement was found when >10 levels is used. 

Denoting the N = 8 levels at Z* =
{
Z*

i
⃒
⃒ 1 ≤ i ≤ N}, the Gaussian 

Process assumes that T*
i = T

(
Z*

i
)

and X*
i = NH3

(
Z*

i
)

form a N-dimen
sional Gaussian distribution respectively. The covariance of the multi
dimensional Gaussian is described by a kernel function, which we 
choose to be the squared exponential kernel, defined as: 

kSE
(
Zi,Zj

)
= σ2exp

(

−

(
Zi − Zj

)2

2L2

)

, (6)  

where L is the correlation length between layers and σ is the prior 
standard deviation. The correlation length L is used to model the cor
relation between adjacent levels and suppresses structures finer than the 
correlation length L. Another popular kernel function is the exponential 
kernel, defined as: 

kE
(
Zi,Zj

)
= σ2exp

(

−

⃒
⃒Zi − Zj

⃒
⃒

L

)

. (7) 

This kernel function is the result of a random walk model with un
correlated Gaussian random noise (Rodgers, 2000). 

Given the N pairs of 
{(

Z*
i ,T*

i
) ⃒
⃒ 1 ≤ i ≤ N} and L, we construct a 

smooth profile of T(Z) that passes through each 
(
Z*

i ,T*
i
)
. Letting Z =

{Zi | 1 ≤ i ≤ M} be the vertical grid of the atmospheric model, we define 
the following two covariance matrices: 

S(Z,Z*)i,j = kSE

(
Zi, Z*

j

)

S(Z*, Z*)i,j = kSE

(
Z*

i ,Z
*
j

) (8) 

Let T* be the vector of 
{
T
(
Z*

i
) ⃒
⃒ 1 ≤ i ≤ M} and T be the vector of 

{T(Zi) | 1 ≤ i ≤ N}. Vector T at all Zi levels is calculated by the inter
polation equation: 

T = S(Z,Z*)S(Z*, Z*)
− 1T*, (9)  

which is a simplified version of a more general Gaussian Process 
assuming that an uninformed state is at zero anomaly. Finally, we set the 
lower and upper boundary conditions by stipulating that the values at 
pressure levels beyond the sampling range should be the same as the 
value at the nearest sampling level. 

Fig. 3 illustrates the effect of correlation length and the choice of 
kernel function. The left panel shows the result of the squared expo
nential kernel and the right panel is the result of using the exponential 
kernel. In both cases, when the correlation length is small (L = 0.1 H0), 
in between two sampled pressure levels, the interpolated anomaly 
profile drops toward zero. At longer correlation lengths (L = 0.5 H0,H0), 

Fig. 3. Smooth atmospheric profile constructed from discrete samples. The left panel shows the profile constructed by the squared exponential kernel and the right 
panel shows the exponential kernel. Black dots show the temperature anomalies sampled at 8 levels. The blue, orange and green lines are constructed atmospheric 
profiles given three different values of correlation length L = 0.1 H0,0.5 H0 and H0 respectively. The separation between sampling levels is roughly H0. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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the profile is smoothly interpolated in between. The exponential kernel 
converges to a piecewise linear interpolation, with interpolated values 
to be always in between the sampled values, thereby disallowing any 
interior maximum. In contrast, the squared exponential kernel allows for 
a much smoother interpolation, where the interpolated values can form 
a smooth curve that may exceed the sampled values. Since it is unknown 
where the maximum temperature or ammonia concentration may occur 
in the atmosphere, the squared exponential kernel yields profiles that 
are less sensitive to the selection of sampling levels while the expo
nential kernel can lead to significant bias when the sampling levels does 
not correspond to the location of maximum temperature or ammonia 
anomaly. 

The above interpolation procedure utilizes random process (RP) to 
map a set of discrete values to a continuous function, denoted as: 

IRP : T*→T (10) 

Strictly speaking, RP is statistical, meaning that a range of profiles 
are generated with a mean and a variance. We simplified the procedure 
by only using the mean and ignoring the variance. By doing so, the 
likelihood estimation given the mean of the constructed continuous 
function is the same as the likelihood estimation given the discrete 
samples, i.e. 

P(Y | T) = P(Y | T*), (11)  

where vector Y is the observed brightness temperatures at multiple 
frequencies and emission angles. P(Y | T) is a statistical notation 
denoting the probability density of observing Y given T. Eq. (11) is valid 
when a set of discrete samples T* uniquely maps to a continuous func
tion T. So, in the following sections, we will ignore the statistical essence 
of IRP and regard IRP as a deterministic interpolation function that yields 
the statistical mean of the RP, i.e.: 

IRP : T*→T = E(T | T*). (12) 

A similar process applies to constructing the ammonia profile X, in 
which the interpolation give a continuous ammonia profile X given a 
discrete set of samples X*.

In the case of interpreting Juno/MWR observations, let Y be the 
observed brightness temperatures/limb darkening at multiple fre
quencies. Let SY be the covariance matrix of observation Y and F be the 
forward radiative transfer model that takes in the atmospheric profile 
(T, X) and outputs the angular-dependent brightness temperatures. We 
define the χ2 parameter of the atmospheric profiles T,X as: 

χ2 = (Y − F(T,X) )
T S− 1

Y (Y − F(T,X) ), (13)  

which is a general form of eq. (2) that measures the goodness of fit to the 
observation. Assuming Gaussian statistics, the probability distribution 
function of observing Y given the profiles T,X is: 

P(Y | T,X) = P(Y | T*,X*) = (2π)− M/2
|SY |

− 1/2exp
(
− χ2/2

)
, (14)  

where M is size of Y. According to Bayes’ theorem, the joint probability 
distribution function of the discrete samples T*,X* given the observation 
Y is thus: 

P(T*,X* | Y) =
P(Y | T*,X*)P(T*,X*)

P(Y)
, (15)  

which means that the probability of an atmosphere to have sampled 
values T*,X* given the observation Y equals the probability of having Y 
observed given sampled values T*,X* multiplied by the prior probability 
of T*,X* and normalized by the probability of observing Y. Since we 
sample temperature and ammonia profiles independently, the joint 
probability is: 

P(T*,X*) = P(T*)P(X*). (16) 

The term P(T*) in eq. (16) is given by the Gaussian statistics: 

P(T*) = (2π)− N/2
|S(z*, z*) |

− 1/2exp
(

−
1
2
(
T*T S(z*, z*)

− 1T* )
)

, (17)  

and P(X*) is obtained in a similar manner. 
We use the Markov Chain Monte Carlo (MCMC) method to perform 

the statistical inference of T,X given Juno/MWR observation Y. We 
employ the Affine Invariant Ensemble Sampler algorithm to conduct the 
sampling (Goodman and Weare, 2010). We use 64 parallel MCMC 
walkers to explore the parameter space. Each walker takes 2000 steps, 
and the final statistics are collected from the positions of the last 1000 
steps taken by all walkers. 

The MCMC chain is initialized by randomly drawing discrete tem
perature T* and ammonia anomalies X*at the sampling pressure levels. 
The top sampling level is at 0.5 bar and the bottom level is at 100 bar. 
Below the 100-bar level, we assume the atmosphere to be isentropic with 
constant ammonia and water mixing ratio. Above the 0.5 bar level, 
where the Juno MWR has no sensitivity, the atmosphere is assumed to be 
isothermal at the temperature of the upper boundary. The prior proba
bility of P(T*,X*) is evaluated by eqs. (16) and (17). The choice of the 
prior standard deviations of temperature and ammonia depends on 
whether we perform an absolute fit or a differential fit. To fit the global 
mean spectra (absolute fit), we use 5 K as the prior standard deviation of 
temperature and 50 ppmv as the standard deviation for ammonia con
centration. The prior standard deviation for the temperature is informed 
by the latitudinal temperature variability observed in mid-infrared 
measurements (e.g. Fletcher et al., 2016; Gierasch et al., 1986). The 
prior standard deviation for ammonia concentration is estimated by 
experimentation, i.e. increasing the prior standard deviation until a 
satisfactory fit to the MWR data is achieved. In fitting the equatorial 
anomaly (differential fit), we use 20 K as the prior standard deviation of 
temperature and 500 ppmv as the standard deviation for ammonia 
concentration. These values are significantly larger than those used in 
the first stage because the equatorial anomaly exhibits a more pro
nounced difference compared to the global mean. 

Then we construct continuous atmospheric profiles T and X based on 
discrete T*,X* using IRP. After constructing the atmospheric profiles, it is 
crucial to ensure that the constructed temperature and ammonia profiles 
are physically possible. Some MCMC models assign zero prior proba
bility to unphysical states. However the method does not apply to 
inferring the state of the Jovian troposphere because there are orders of 
magnitude more unphysical states than physical states. 

Supposing that the Jovian troposphere is nearly adiabatic and we 
wish to infer the small deviation from adiabaticity, the stability criteria 
demand a monotonic increasing potential temperature with height 
(neglecting the contribution of water in this example). If we randomly 
sample the potential temperatures at N = 8 layers in the atmosphere, the 
chance to have monotonically increasing values is 2− 7 ≈ 0.78%. So, 
assigning zero prior probability to unphysical states would reject >99% 
samples. Therefore, we opt to rectify the constructed profiles based on 
constraints imposed by stability and thermodynamic considerations 
after IRP. The step is denoted by: 

RTX : (T,X)→
(

T̃, X̃
)
, (18)  

where T̃, X̃ are rectified physical states from proposed states T,X (may 
be unphysical). 

RTX entails the following three sub-steps: (1) examining the thermal 
and compositional profiles layer-by-layer, starting from the bottom and 
moving upwards, (2) correcting for any statically unstable layer to 
neutral stability, and (3) removing excess vapors that exceed the satu
ration vapor pressure. RTX resembles the convective adjustment process 
developed for GCMs (Arakawa and Schubert, 1974; Betts and Miller, 
1993) or single-column models (Manabe and Wetherald, 1975). How
ever, unlike these models, we directly alter the concentration of 
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condensable vapors and the temperature to satisfy the stability criteria, 
without considering time scales, mass conservation, or enthalpy con
servation. To account for the changing of the mean molecular weight of 
the atmosphere across the water condensation level, we prescribe a 
profile of water vapor according to its saturated profile. It is important to 
note that while water is included in the analysis, it is not part of the 
inversion solution. Instead, it merely controls the degree of super- 
adiabaticity of the temperature profiles. A zero-water abundance 
would prevent the occurrence of any super-adiabatic temperature 
gradient. Conversely, detecting the presence of any super-adiabatic 
temperature gradient implies the presence of water, and thus the abil
ity to infer water abundance. This concept is further elaborated in Sec
tions 4 and 5. Fig. 4 illustrates temperature profiles constructed by IRP 
and the subsequent correction step for three randomly sampled tem
perature anomaly profiles. The local peak signifies the sampling pres
sures. The dashed line represents the profile derived from IRP, while the 
solid lines illustrate the rectified profiles. Neutrally stratified atmo
spheric layers are indicated by vertical segments in the virtual potential 
temperature (Emanuel, 1994). 

Note that, altering T,X after IRP but before calculating the likelihood 
function is allowed in the MCMC sampling. This is because the mapping 

from (T,X)→
(

T̃, X̃
)

is unique. Therefore, the following construction 

chain 

(T*,X*)→IRP
(T,X) →RTX

(
T̃, X̃

)
(19)  

yields a unique mapping from (T*,X*) to 
(

T̃, X̃
)

and thus: 

P
(

Y | T̃, X̃
)
= P(Y | T,X) = P(Y | T*,X*). (20) 

After getting T̃,X̃,a forward radiative transfer calculation F
(

T̃, X̃
)

is 

carried out to yield the likelihood P
(

Y | T̃, X̃
)

of matching observation 

Y. The radiative transfer model is the JAMRT model that calculates the 
opacity from H2O, NH3, H2S, H2-H2/H2-He collisional induced 

absorption and free-free electron absorption (Bellotti et al., 2016; 
Hanley et al., 2009; Janssen et al., 2017; Li et al., 2018b; Oyafuso et al., 
2020). But we did not include water cloud given that the opacities are 
low, based on the derived cloud bulk densities and the measured mi
crowave properties of aqueous ammonia (Duong et al., 2014). Finally, 

the posterior probability P
(

T̃, X̃ | Y
)

is derived using the Bayes’ law. 

Combing the above steps, we have the following inference sequence: 

(T*,X*)→IRP
(T,X) →RTX

(
T̃, X̃

)

̅̅→
F,Y P

(
Y | T̃, X̃

)
→

Bayes
P
(

T̃, X̃ | Y
)
. (21) 

The above sequence suggests that each state (T*,X*) yields a unique 

posterior probability P
(

T̃, X̃ | Y
)

. Since we cannot directly infer P(T*,

X* | Y) without using a continuous atmospheric profile, we treat 

P
(

T̃, X̃ | Y
)

as an approximate for P(T*,X* | Y) as has been done in 

various retrieval studies for the Jovian stratosphere in the infrared (e.g. 
Fletcher et al., 2010, 2016). Let (T*,X*)

n be the state at the n-th step, the 
MCMC algorithm proposes a new state (T*,X*)

n+1 for the (n + 1)-th step. 
Either (T*,X*)

n+1 is added to the chain or (T*,X*)
n is added depending 

on their relative posterior probabilities. The chain is then advanced from 
n to n+ 1, and the steps are repeated until states in the chain reach 
equilibrium. After the chain converges, we infer the posterior distribu
tion given all states in the chain. Each state (T*,X*) in the chain is 
associated with a vertical profile pair (T̃, X̃) and a posterior probability 
P(T*,X* | Y). The final mean profile is the weighted average of all pro
files in the chain with the weight being P(T*,X* | Y). The standard de
viation of the inferred profile is obtained in a similar manner. 

4. The derived temperature and ammonia vapor profile 

Fig. 5 presents four different Juno MWR retrieved kinetic tempera
ture profiles from 1 bar to 20 bars near the equator (0– 5 oN). As dis
cussed in Section 3, the deep water abundance is not part of the 
inversion variable. We manually experiment with four different deep- 
water abundances, 0.1, 1, 2, and 4 times solar (solar oxygen 

Fig. 4. Three randomly sampled temperature profiles (green, blue, orange). (A) Dashed lines show the non-adiabatic temperature anomaly constructed according to 
eq. (9). Solid lines show adjusted temperature profiles with unstable layers removed. (B) Virtual potential temperature profiles of the three samples. A vertical line 
segment of the virtual potential temperature indicates neutral stability. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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abundance according to Asplund et al., 2009) to elucidate the effect of 
water on the temperature profile and the goodness-of-fit to Juno/MWR 
data. The Galileo Probe profile, representing an adiabatic fit to the ASI 
data, matched to 260 K at 4.18 bar (Seiff et al., 1998) is drawn in parallel 
for comparison. 

We observe that, regardless of the choice of the deep water abun
dance, the Juno/MWR-derived temperature profile is unambiguously 
warmer than the Galileo Probe temperature profile at pressures >5 bars. 
This means that Jupiter’s deep entropy θ1bar is larger than the kinetic 
temperature at the 1-bar pressure level, T1bar. Fig. 6 zooms in the 

difference between the temperature profiles to show the uncertainty of 
the profile inversion. The uncertainty of the Galileo Probe temperature 
profile is about ±1 K and the uncertainty of the Juno MWR derived 
temperature is generally at about ±2 K at all pressure levels. 

Comparing the global mean profile with the equatorial profile at 
various deep water abundances reveals the impact of water on the 
temperature profile. Fig. 7A compares the case with zero water abun
dance at the equator to the global mean. The equatorial deep entropy 
diverges from the global-mean deep entropy. The agreement improves 
as the water abundance increases, as shown in Fig. 7B-D, with the 
equatorial deep entropy matching the global isentrope the best when the 
deep water abundance is four times solar. This is because the EZ appears 
“cold” in brightness temperature and one possible scenario is that the EZ 
is indeed colder between some pressure levels. If there is no water in the 
EZ, the only way to reduce the temperature is to reduce the temperature 
of the entire atmosphere since the shallow atmosphere is connected to 
the deep atmosphere via an adiabatic relation. 

However, when the water abundance is greater than zero, a super- 
adiabatic temperature gradient is permitted across the water conden
sation level, and the super-adiabaticity increases with the deep-water 
abundance. The development of a super-adiabatic temperature allows 
a new temperature solution that is cold at the shallow atmosphere (as a 
fitting to the “cold” brightness temperature) and warm at the deep at
mosphere (as a fitting to the limb darkening anomaly). Collectively, they 
bring the equatorial deep entropy close to the global mean deep entropy. 
Further increasing the deep-water abundance does not improve the 
fitting. In all cases with a finite value of the deep-water abundance, 
T1bar is lower than θ1bar. In the case of four times solar water abundance, 
θ1bar is approximately 169 ± 1.6 K while T1bar is 166 ± 1 K as determined 
by the Galileo Probe. 

In addition to the non-adiabatic gradient of temperature, a gradient 
of ammonia vapor is also found at the equator, as has already been 
discussed (Li et al., 2020; Moeckel et al., 2023). In all cases of the deep 
water abundance, the ammonia vapor exhibits a positive gradient (cyan 
lines in Fig. 7). The peak ammonia concentration reaches 500 ppm in 
between 1 and ~ 3 bars, a level consistent with the Galileo Probe 
measurements. Then, the ammonia concentration decreases with 
increasing depth, reaching 315 ± 20 ppm at depth. The deep ammonia 
concentration determined by this study is less than that reported in (Li 
et al., 2017) because we have improved our radiative transfer model by 
considering the opacity contribution from thermally ionized electrons 
from alkali metals (Bhattacharya et al., 2023). 

One caveat of this inversion method is that the super-adiabatic 
temperature gradient only develops at the water condensation level 
near a few bars, because the profile of water is prescribed to follow the 
saturation curve. In reality, a gradient of water vapor may exist any
where in the deep atmosphere, as imposed for example by the large scale 
circulation, and the water vapor may be sub-saturated, but the inversion 
method does not permit consideration of these possibilities. Yet, a robust 
result emerging from these trial values of the deep water abundance is 
the existence of a super-adiabatic temperature gradient. 

Fig. 8 compares the fitting of two cases: a dry case (blue contours) 
and a four-times-solar-water case (orange contours). By inspecting 
panels E and F in Fig. 8, it is evident that the low brightness temperature 
observed in the 10 GHz and 22 GHz channels results in the super- 
adiabatic temperature gradient. This is consistent with what we have 
found in the synthetic study in Fig. 1. Since the inversion model freely 
evolves its temperature at the 1-bar pressure level, there is a degeneracy 
between increasing the ammonia abundance and decreasing the tem
perature at a few bars of pressure. The ammonia concentration in the dry 
case is higher than in the four-times-solar-water case to compensate for 
the low brightness temperature. However, the four-times-solar-water 
case fits the Juno/MWR data at 0.6, 5, 10, and 22 GHz channels better 
because the clustering of points is closer to the Juno/MWR observation 
(black crosses). The improved fit at the 0.6-GHz channel for the four- 
times-solar-water case is due to the increased water opacity at depth, 

Fig. 5. Inferred temperature-difference profiles for four deep-water abun
dances. The uncertainties of the temperature profiles are too small to discern at 
this scale. 

Fig. 6. Difference between temperature profiles and uncertainties. The shaded 
area depicts the uncertainty of each case, which is labeled on the top right 
corner. The Galileo Probe profile is a reference, so it appears as a vertical line in 
the figure. 
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Fig. 7. Global and equatorial profiles. Thin red lines: global mean temperature profile. Thick red lines: equatorial temperature profile. Red shades: temperature 
profile inversion uncertainty. Thin cyan lines: global ammonia profile. Thick cyan lines: equatorial ammonia profile. Cyan shades: ammonia profile inversion un
certainty. Dashed lines: reference dry adiabatic profile. The deep water abundance increases from left to right, as indicated in the figur. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. MCMC samples states in both nadir brightness temperature and limb darkening space. Each dot represents a state in the MCMC chain, but with a 5-fold 
decrease in density. One and two sigma confidence intervals are drawn as two concentric contours. The blue contours represent the dry case (0.1 times solar 
water), while the orange contours represent the case with four times solar water. The Juno/MWR channel frequencies are indicated in the lower right corner of each 
panel. The black crosses signify the uncertainty of the equatorial anomaly which the MCMC inversion model fits. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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which becomes greater than ammonia opacity and that contributes to a 
better fit. The improved fits in other channels are driven by a super- 
adiabatic temperature profile. 

Finally, the degeneracy between the kinetic temperature and the 
ammonia concentration at three pressure levels (1 bar, 5 bar and 20 bar) 
is displayed as scatter plots in Fig. 9. For the global-mean profile, a 
degeneracy between kinetic temperature and ammonia concentration is 
evident at all pressure levels. Specifically, at the 1-bar pressure level, a 
temperature increase of 5 K would produce a similar microwave 
observation as an increase in ammonia concentration by about 50 ppm 
(Fig. 9A). The degeneracy becomes less significant for the contrast be
tween the equatorial profile and the global mean. While the ammonia 
concentration can vary between 400– 550 ppm (blue contours), Fig. 9B 
shows that the temperature contrast at 5-bar (blue points) is readily 
determined at the precision of ±1 K with the equatorial temperature 
being colder than the global mean by about 7 K. The clustering of blue 
points near 275 K is driven by both the Juno/MWR observation and the 
stability requirement. First, χ2 fitting to the MWR observation is reduced 
if the temperature is comparatively low at 5 bar. Second, the atmosphere 
becomes unstable when the temperature is too low. As a result, the 
MCMC sampling finds the minimum temperature at 5-bar at which the 
atmosphere is marginally stable. At 20-bar, the uncertainty contours for 
both the equatorial profile and the global mean profile run parallel to 
each other. However, the ammonia concentration in the EZ is higher 
than the global mean by approximately 50 ppm. 

The high precision inference, 1 K out of 275 K, at 5-bar pressure level 
deserves a careful discussion. Recall that we have used two-stage dif
ferential fitting algorithm. In the first stage, we fit the global mean 
observation, taking into account the calibration uncertainty. In the 
second stage, we fit the equatorial anomaly without considering cali
bration uncertainty, leveraging the precision of the observation, which 
amounts to a fraction of a Kelvin. Consequently, the uncertainty esti
mation in the second stage pertains to the difference from the global mean, 
i.e. 

σ(δT) = 1 K (22) 

This explains why the spread of temperature uncertainty in the 
equatorial profile is much more constrained than in the global mean 
profile, as seen in Fig. 9A and B. The triangle, arrow and circle in Fig. 9A 
depict the relation between the global inversion (first stage) and the 
equatorial inversion (second stage). The triangle refers to where the 
truth is for the global profile, which can be anywhere inside the orange 
error ellipse. The difference between the equatorial profile and the 

global-mean profile is illustrated by the arrow. If the triangle shifts from 
black to grey, the origin of the arrow also shifts from black to grey but 
the length and direction of the arrow do not change. The uncertainty of 
the arrow is depicted by the dashed grey ellipse, which is much smaller 
than the orange ellipse. 

Another observation is that the error ellipse at 20 bar pressure level 
(Fig. 9C) does not behave in the same way as 1 bar (Fig. 9A) and 5 bar 
(Fig. 9B). This is because the uncertainty at the 20-bar pressure level is 
constrained by the precise limb darkening measurement at the 1.2-GHz 
channel, which is already a relative measurement. So, Fig. 9C indicates 
that the EZ has more ammonia vapor than the global mean but their 
temperatures are similar at 20-bar (422 ± 4 K). A 4 K uncertainty at 20- 
bar, when translated via the adiabatic relation, implies a 1.6 K uncer
tainty at the 1-bar pressure level. It is seen in Fig. 7 that all temperature 
profiles gradually converge to an adiabat as the pressure approaches 
100 bars of pressure. From there, we determine that the deep entropy of 
Jupiter is θ1bar = 169 ± 1.6 K given all possibilities of ammonia 
concentration. 

5. Estimation of the deep-water abundance based on the super- 
adiabatic temperature gradient 

Since the Galileo Probe determined that, T1bar = 166 ± 1 K, we 
potentially observe an entropy difference between the shallow and deep 
levels: 

T1bar − θ1bar = − 3.0± 1.9 K (23) 

This unstable temperature contrast can only be balanced by a vertical 
decrease of the mean molecular weight, which indicates the existence of 
water. In this section, we discuss the relationship of the water abun
dance to the potential temperature difference. 

Contrary to what has sometimes been supposed, the moist adiabatic 
temperature profile is not a neutral stability profile, owing to the added 
effect of layered molecular weight, as given by the vertical gradient of 
the water mixing ratio. The temperature profile that is neutrally buoyant 
with respect to the vertical movement of air parcels, including latent 
heat, has been derived by Durran and Klemp (1982), confirming the 
earlier work of Lalas and Einaudi (1974). Richiardone and Giusti (2001) 
present an equivalent expression in which the vapor gradient is given in 
proportion to the undifferentiated mixing ratio, thereby providing 
explicit forms for the neutrally stable lapse rate (see their eqs. 7 and 9). 
Assuming convection adjusts a moist environment to neutrally buoyant 
stability, the integration of the modified lapse rate specifies the vertical 

Fig. 9. Degeneracy between kinetic temperature and ammonia concentration at 1 bar, 5 bar and 20 bar pressure levels. The MCMC states sampled for the EZ are 
displayed in blue colors. The MCMC states sampled for the global mean are displayed in orange colors. From left to right, the pressure levels are at 1 bar, 5 bar and 20 
bar. One-sigma and two-sigma uncertainties are drawn as concentric contours (ellipses). The meanings of arrows, dashed ellipses and triangles are explained in the 
main text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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temperature profile within a saturated region. As applied to terrestrial 
meteorology, where water is lighter than nitrogen‑oxygen air, the 
neutrally stable lapse rate is only slightly steeper than the moist adiabat. 
Nevertheless, dropsonde statistics for precipitating cyclones in the 
eastern Pacific show better agreement with neutral stability (Richiar
done and Manfrin, 2009). But as applied here to Jupiter, where water is 
much heavier than hydrogen‑helium air, the neutrally stable lapse rate 
is steeper, or super-adiabatic, and by an amount depending upon the 
water abundance. 

Fig. 10 shows the vertical profiles of neutrally buoyant potential 
temperature within Jupiter’s cloud layer, calculated by vertical inte
gration of the Richiardone-Giusti lapse rate equations, for the labeled 
abundances of water, given in proportion to the solar oxygen to 
hydrogen ratio. A vertical potential temperature difference of |Δθ| = 3 K 
corresponds to a water abundance of about 5 times solar. Note that most 
of the vertical variation occurs within a thin layer between the 6.5 and 4 
bar pressure levels, surmounted by an approximately adiabatic lapse 
rate aloft. However, these results, based on the neutrally stable lapse- 
rate equations, does not necessarily assume a fully saturated environ
ment, and neglect the effects of moist entrainment. 

A more realistic estimation, taking the updrafts, downdrafts and 
mixing into account, can be obtained by 3D numerical simulation of 
moist convection. Adapting the SNAP (Simulating Non-hydrostatic At
mospheres on Planets) model, we have conducted a series of cloud- 
resolving simulations with different deep water abundance by expand
ing the published 2D version (Li and Chen, 2019) to 3D (Ge et al., 2023). 
We use the same forcing and evolve the model to a steady state. Then, we 
gather the domain-averaged temperature profile and estimate its mean 
and standard deviation over time. We conducted four experiments at 
0.1×, 0.3×, 1× and 3× solar water abundances. The resulting rela
tionship derived from the numerical experiment and uncertainties are 
shown as the orange curve and shaded are of Fig. 11 and is very similar 
to the Richiardone-Giusti neutral-lapse-rate relation plotted as the blue 
curve. A least-square fit (correlation coefficient, R = 0.99) to the 
simulation results yields the simple linear relationship: 

Δθ = (0.60± 0.14)K ×

(
x

x☉

)

+(0.04± 0.02)K. (24) 

Since the Juno/MWR-inferred Δθ = 3.0 ± 1.9 K, given by the sta
tistical estimates of the slope and the intercept, the distribution function 

of 
(

x
x☉

)
is a quotient distribution by two noncentral normal distributions. 

Let two normal variables be X = N
(
μX, σ2

X
)

and Y = N
(
μY , σ2

Y
)
, the ratio 

Z = X/Y can be approximated as a normal distribution with mean μZ =

μX/μY and variance σ2
z =

(
μX
μY

)2(σ2
X

μ2
X
+

σ2
Y

μ2
Y

)
(Díaz-Francés and Rubio, 2013). 

Using the above equations, the statistical range of 
(

x
x☉

)
is: 

Fig. 10. Potential temperature profiles of a neutrally stratified saturated atmosphere, as calculated by integration of the Richiardone-Giusti lapse rate equations, for 
the indicated choices of the deep water abundance. 

Fig. 11. The relation between the potential temperature difference and the 
oxygen enrichment. Four dots with error bars are statistical results from three- 
dimensional numerical simulations at four different deep water abundance. The 
orange line and shaded area show the best-fit to numerical simulations and the 
estimated uncertainty range (eq. 8). Blue dots are theoretical calculations based 
on integrating a neutral density lapse rate (translation of Fig. 10). Three hori
zontal lines are Δθ = 1.1 K, 3 K,4.9 K respectively. 
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(
x

x☉

)

= 4.9± 3.4. (25) 

Consequently, we estimate a water enrichment of approximately 
1.5 ∼ 8.3× solar at Jupiter’s equator. This new result has a similar upper 
bound as estimated by our previous work assuming a moist adiabat (Li 
et al., 2020), but rules out a solar or subsolar abundance of water. It 
does, however, allow for a C/O ratio that is solar, given the similar 
enrichment of carbon. A solar C/O value in the Jovian atmosphere 
would be consistent with the solar-composition icy planetesimal model 
of (Owen and Encrenaz, 2003). 

6. Conclusion 

There are three key findings from this study. First, we determined 
that the deep entropy of Jupiter’s atmosphere is θ1bar = 169 ± 1.6 K. 
This result comes from a careful study of the brightness temperature and 
limb darkening observations made by the Juno/MWR instrument from 
the first 12 perijove passes of Jupiter. The precise limb darkening 
measured by the 1.2 GHz channel plays a crucial rule in narrowing the 
uncertainty. 

Second, we detected a super-adiabatic temperature gradient near 
Jupiter’s EZ. A quantitative estimate is that T1bar − θ1bar = −

3.0 ± 1.9 K. This result relies on both Juno/MWR’s probe of the deep 
atmosphere and the Galileo Probe’s in-situ measurement of the tem
perature at the 1-bar pressure level. 

Third, the super-adiabatic temperature gradient highlighted in our 
second finding suggests a water abundance exceeding solar values. 
Using 3D numerical simulations, we have determined an empirical 

relation Δθ ≈ (0.60 ± 0.14) K×
(

x
x☉

)
. This empirical relation agrees 

with the one-dimensional result obtained by vertical integration of the 
Richiardone-Giusti lapse rate equations. Using the empirical relation 
and the super-adiabatic temperature gradient leads to an estimated 
deep-water abundance ranging from 1.5 to 8.3 times the solar value. 

7. Caveats of this study, discussion and looking forward 

Juno’s MWR instrument records the radio emissions from various 
depths within Jupiter’s atmosphere. To interpret these MWR data in 
terms of physical attributes, such as its composition and temperature, 
the contextual (or ambient) information, utilization of statistical 
methods and numerical simulations are all as vital as the MWR mea
surements themselves. 

We have employed temperature and ammonia variability as the prior 
constraints, used the Galileo Probe results as a reference point, con
structed atmospheric profiles using Gaussian Process, and utilized 
meteorological theory and numerical simulations to establish a new 
constraint on the water abundance. Should any of these factors prove 
unreliable, the conclusions presented in this article may need revision 
based on updated ambient information. In this context, we offer 
forward-looking discussions and emphasize the cautions and caveats 
tied to this research. 

Discussion #1. The Galileo Probe observation 
The Galileo Probe provides the sole in-situ measurement of a giant 

planet’s atmosphere to date. While it functioned up to a pressure of 20 
bars and assessed the atmospheric conditions at a single, anomalous 
location on Jupiter – a 5-μm hot spot – its data remains invaluable. It 
offers a crucial reference point for all indirect analyses of Jupiter’s at
mosphere based on remote observations. Understanding the origin of the 
hot spot, the underlying physical mechanism, and how representative its 
findings are of Jupiter’s entire atmosphere is of utmost importance. 

From the study of the Juno MWR data, we find that the Galileo Probe 
site, a 5-μm hot spot, is atypical in the following ways: 

(1) The composition (particularly ammonia vapor) measured by the 
Galileo Probe is different from either the global mean or the EZ. The 

global-mean deep ammonia concentration is revised to 310 ± 20 ppm 
based in this study, which is less than the lower limit of the Galileo Probe 
in-situ observation (350 ppm). The discrepancy could be due to an 
inverted ammonia gradient near the equator, which is confirmed by 
multiple inversion study of the Juno observation (Li et al., 2020; 
Moeckel et al., 2023). 

(2) The composition profile measured by the Galileo Probe is 
different from either the global mean or the EZ. The vertical profile of 
ammonia vapor measured by the Galileo Probe is similar to what one 
would expect from an equilibrium condensation model but displaced to 
a higher pressure. Li et al. (2018a) constructed a parameterized “adia
batic stretching” model in which the atmosphere is stretched adiabati
cally in the vertical by a factor of X. Using an X = 4 stretching – an air 
parcel is displaced from 1 bar to 4 bars – they were able to fit the profile 
of both NH3 and H2S (Fig. 3 of Li et al., 2018a). However, the stretching 
model does not appear to be globally applicable. Neither the global 
mean nor the EZ shows a significant stretching of air column. It is likely 
that significant stretching (vertical displacement) only exists at the 5-μm 
hot spot (Showman and Dowling, 2000). 

(3) The temperature profile recorded by the Galileo Probe suggests 
the level of non-adiabaticity in Jupiter’s atmosphere, but it may not 
represent the global average or the average of the EZ as a whole. The 
Galileo Probe ASI returned two reliable pieces of information regarding 
Jupiter’s atmosphere. The first is the temperature at 6 oN and at 1-bar 
pressure level, T1bar = 166.1 ± 0.8 K. A thorough re-analysis of the 
Voyager radio occultation data yielded roughly the same temperature at 
the equator (Gupta et al., 2022; Lindal et al., 1981). However, the 
temperature at 12 oS is 4 K higher (Gupta et al., 2022). So, indeed, the EZ 
could be a cold place on the planet compared to the neighboring lati
tudes. The second observation concerns the variability in the atmo
spheric temperature profile between 1 bar and 20 bars as the probe 
descended. This finding has frequently been overlooked in publications 
due to its complex nature and challenging interpretation. In this article, 
we highlight the significance of this observation, emphasizing that the 
0.1– 0.2 K/km non-adiabaticity detected by the Galileo Probe should not 
be dismissed. In particular, we found that globally averaged temperature 
profile is sub-adiabatic at the level of 0.1 K/km between 1 and 100 bars 
and the EZ is super-adiabatic across the water condensation level. 

(4) The temperature measurement by the Galileo Probe at 1-bar 
pressure level cannot be used as a value for the deep entropy. This 
study of the Juno MWR observations reveals that the EZ of Jupiter may 
exhibit a stable super-adiabatic temperature gradient across the water 
condensation level. If the Galileo Probe profile can be interpreted by the 
stretching model discussed in point (2), stretching the background 
shallow atmosphere by a factor of 4 in pressure leads teqo a colder 
temperature at depth compared to the unperturbed atmosphere. How
ever, the colder temperature does not mean that the air in the 5-μm hot 
spot is denser because the 5-μm hot spot is a dry spot and the background 
atmosphere is water-rich and thus high in density. 

Discussion #2. The Deep-Water Abundance 
We infer the deep-water abundance based on the density contrast 

between the shallow and deep atmosphere. Our nominal estimate of the 
4.9 times solar oxygen enrichment is comparable to the well-established 
value for carbon (Niemann et al., 1998; Owen and Encrenaz, 2003; 
Wong et al., 2004, 2008). Our inference hinges on these four conditions: 
(1) The atmosphere of Jupiter is stably stratified. (2) The deep entropy of 
Jupiter is very nearly uniform across all latitudes. (3) The temperature at 
the 1-bar pressure level is known from observations other than from the 
Juno MWR. (4) The super-adiabatic temperature gradient (if any) line
arly scales with the deep water abundance. The first condition is met by 
fluid dynamics. The second condition is a plausible assumption, 
consistent with deep convective mixing in the absence of a rigid lower 
boundary. The third condition is met by the Galileo Probe observation 
and the Voyager radio occultation experiment near the equator. And the 
fourth condition is supported by established theory and numerical 
simulations over a limited range of assumed water abundances. 
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Although the inferred 1.5– 8.3 enrichment of O/H ratio at Jupiter’s 
equatorial region is derived under various assumptions, the presented 
method offers a new way of detecting water on Jupiter through the 
measurement of the potential temperature difference between the 
shallow and deep layers. 

A supersolar value of water has implications for the nature of the 
deeper interior. At kilobar pressures, Cavalié et al. (2023) derived the 
water abundance from modeling the kinetics of CO-CH4 conversion. 
Their results are consistent with supersolar water only if the vigor of 
vertical mixing in the kilobar region is very sluggish, as might be ob
tained by a deep radiative zone (Guillot et al., 1994a) or other mecha
nism to inhibit convection. Interior models tied to Juno gravity data 
severely limit the abundance of heavy elements in the deep envelope 
(hundreds of kiolobars to megabars), such that twice solar oxygen or 
larger is not permitted (Miguel et al., 2022; Militzer et al., 2022). 
Reconciliation of the results might require an outer envelope with an 
oxygen (water) abundance different from that in the deeper interior 
(Helled et al., 2022). 

Discussion #3. Spectral inversion method 
In this work, we develop a novel spectral inversion method to infer 

the atmospheric temperature structure from microwave observations. 
This method forms the cornerstone for deducing the deep water abun
dance in the study. We first demonstrate that Juno MWR’s brightness 
temperature and limb darkening measurement contains information 
about the kinetic temperature structure and the constraint on temper
ature is stronger at long-wavelength channels because (1) the variability 
of ammonia decreases as one goes deeper into the atmosphere and (2) a 
small non-adiabatic temperature gradient is amplified by integrating 
over a large vertical distance. 

In order to break the degeneracy between the ammonia profile and 
the temperature profile, we develop ways to leverage the precision of the 
measurement by invoking a two-stage fitting, one for the global average, 
and another for the equatorial anomaly. To regularize the variability of 
the ammonia profile, we utilize the Gaussian Process to force a vertical 
correlation between ammonia concentrations. To allow a wider possi
bility of the temperature profiles, we randomly sample the atmosphere 
at evenly spaced levels and construct a smooth interpolated profile. To 
exclude impossible solutions of the temperature structure, we make 
corrections to the sampled atmospheric profile wherever the atmosphere 
is unstable to convection. The flexibility, regularity and the robustness 
of the current method supersedes the previous publications on the Juno 
MWR retrievals (Li et al., 2017, 2020). 

The spectral inversion method detailed in this article employs 
advanced statistical techniques. These techniques warrant further ex
amination by statisticians and mathematicians, optimization by com
puter scientists, and validation through alternative measurement 
methods. Harnessing the MWR instrument’s accuracy and precision 
using statistical approaches still remains a largely untapped area. 

Discussion #4. Origin of super-adiabaticity 
The two-dimensional cloud-resolving simulation of Jovian weather 

by Li and Chen (2019) demonstrates that a super-adiabatic temperature 
gradient naturally develops in the presence of water when the atmo
sphere is made of hydrogen and is heated from bottom and cooled from 
top. This type of simulation best represents the equatorial region of 
Jupiter due to the absence of the Coriolis force. 

Many similar theoretical works have been published suggesting the 
existence of a stable super-adiabatic layer in hydrogen atmospheres. To 
name a few, Guillot (1995) suspected that, for a hydrogen atmosphere 
loaded with heavy condensable species, there is a threshold above which 
the vertical gradient of molecular weight due to condensation can sta
bilize the layer against moist convection. Li and Ingersoll (2015) pointed 
out that a stable super-adiabatic layer is crucial for regulating the pe
riodic eruption of Saturn’s giant storms. and thus deep water abundance 
on Saturn must exceed a value of 10 times solar. Friedson and Gonzales 
(2017) and Markham and Stevenson (2021) considered the inhibition of 
thermal convection in condensate-rich planets such as Uranus and 

Neptune and the implication for their thermal evolution history. 
Although it has been theorized for decades, this study provides the 

first detection of a stable super-adiabatic temperature gradient in a giant 
planet via the study of microwave spectra. The origin of the super- 
adiabaticity is due to the contrast in molecular weight between the 
light ambient atmosphere made of hydrogen and helium and the heavy 
condensable volatiles made of water and ammonia. The super-adiabatic 
temperature layer may be ubiquitous for all giant planets. The analysis 
of Juno MWR data suggests that the EZ is most likely to exhibit a super- 
adiabatic temperature gradient where higher latitudes may have other 
unique dynamics that suppresses the development of super-adiabatic 
temperature gradient. 

Discussion #5. Joint multi-instrument analysis 
Our analysis benefits from combining Juno and Galileo probe mea

surements. The accuracy of Galileo anchors the uncertainty in the 
temperature at low pressure, where ammonia is highly variable, and the 
precision of Juno’s MWR constrains the temperature of the deep atmo
sphere where there is less variability. Additional complementary mea
surements are possible such as space- and ground-based infrared 
observations, radio occultations, among others. This article presents the 
framework for a combined analysis of the MWR data at depth and the 
Galileo entry probe data at shallower levels. A joint analysis of the MWR 
data with the infrared observations could potentially reveal the tem
perature structure at the 1-bar pressure level for a wider range of lati
tudes. This approach will be the subject of future work. 
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