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Abstract The Cassini Visual and Infrared Mapping Spectrometer (VIMS) 5-μm images are used to derive
Saturn’s global zonal winds around the 2,000-hPa level. The comparison of zonal winds between 2,000 and
300–500 hPa shows a general consistency of wind structure between the two pressure levels on a global
scale. However at some latitudes, the magnitude of the zonal winds differs between these levels. The
equatorial zonal winds are stronger downward, while the zonal winds in the middle and high latitudes are
generally weaker downward. These new wind measurements also imply that barotropic and baroclinic
instabilities probably exist through the relatively deep atmosphere at some latitudes. Finally, our analysis
reveals that the VIMS winds in the two polar regions are basically constant with time except for a westerly jet
centered at ~88°N, which decreased from 135 ± 7 m/s in 2008 to 91 ± 12 m/s in 2017.

Plain Language Summary Images of giant planets at the visible wavelengths are widely used to
track visible clouds and hence estimate the atmospheric winds at the pressure levels of the visible clouds.
On the other hand, images at the infrared wavelengths (e.g., 5 μm), which are sensitive to the pressure
levels below the visible clouds, can be used to measure the relatively deep winds. Here we use the infrared
images recorded by the Cassini spacecraft to measure Saturn’s zonal winds (i.e., atmospheric wind in the
longitudinal direction) at the relatively deep pressure levels around 2,000 mbar. We provide the global profile
of the zonal winds around 2,000 mbar for the first time. The comparison of the global profile of zonal
winds between 2,000 mbar and 300–500 mbar reveals interesting characteristics of the vertical shear of zonal
winds and the related stabilities on Saturn. In addition, the comparison of the 2,000-mbar zonal winds among
different years suggests important temporal characteristics of zonal winds in the polar region of Saturn.
This observational study will not only provide key information about the large-scale atmospheric dynamics
but also help us develop the theories and models of the general circulation on the giant planets.

1. Introduction

Wind fields play a critical role in the meteorology and climate of planetary atmospheres by setting the basic
environment for atmospheric dynamical processes, such as storms, vortices, and waves (e.g., Batchelor, 1967;
Holton, 2004; Pedlosky, 1987). Large-scale zonal winds, defined as the easterly or westerly winds averaged
over different longitudes in a latitude bin, are very strong (~100–400 m/s) on the four giant planets (i.e.,
Jupiter, Saturn, Uranus, and Neptune). Multi-instrument observations of Saturn from the Cassini spacecraft
acquired over 14 years (2004–2017) provide a unique opportunity to explore the spatiotemporal variability
of the zonal winds on Saturn.

The continuum band images recorded by the Cassini Imaging Science Subsystem (ISS; Porco et al., 2004) have
been widely used to explore Saturn’s zonal winds at the same level as the top visible clouds (e.g., Antuñano
et al., 2015; Del Genio et al., 2007; Del Genio & Barbara, 2012; Dyudina et al., 2008, 2009; Garcia-Melendo et al.,
2010; Garcia-Melendo, Perez-Hoyos, et al., 2011; Li et al., 2011; Porco et al., 2005; Sanchez-Lavega et al., 2016;
Sayanagi et al., 2013; Vasavada et al., 2006). The top visible clouds on Saturn are generally referred to as the
ammonia clouds (e.g., West, 1983), residing around the 300–500 hPa pressure level (e.g., Perez-Hoyos &
Sanchez-Lavega, 2006a; Tomasko & Doose, 1984; West, 1983). The ISS zonal winds can be further used to
explore the wind patterns above the visible clouds by combining the atmospheric temperature data
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retrieved from the Cassini Composite and InfraRed Spectrometer (CIRS; Flasar, Kunde, Abbas, et al., 2004) and
the thermal wind relationship (e.g., Achterberg et al., 2014; Flasar et al., 2005; Fletcher et al., 2010, 2011, 2016,
2017; Fouchet et al., 2008; Guerlet et al., 2011; Li et al., 2007, 2008, 2011, 2013; Read et al., 2007; Read, Conrath,
et al., 2009).

The observations from the Cassini ISS/CIRS improve our understanding of the zonal winds within and above
the ammonia clouds around 300–500 hPa. Conversely, the infrared images can be used to explore the zonal
winds below the ammonia clouds. In particular, the images around 5 μm recorded by the Cassini Visual and
Infrared Mapping Spectrometer (VIMS; Brown et al., 2004) are sensitive to the pressure levels around
2,000 hPa (Baines et al., 2005, 2009; Momary et al., 2006). Therefore, the Cassini VIMS 5-μm images have been
used to explore Saturn’s zonal winds at the relatively deep levels in recent years (Baines et al., 2005, 2009;
Choi et al., 2009; Dyudina et al., 2009). However, a systematic analysis of the global profile of VIMS 5-μmwinds
is not available yet, partly because such an analysis would require high-spatial-resolution pole-to-pole obser-
vations. In addition, the temporal variations of VIMS 5-μm zonal winds have not been explored either. Here,
we present a study of the global profile of VIMS 5-μm zonal winds and an initial analysis of the temporal var-
iations of zonal winds by combining the Cassini VIMS observations in multiple years

2. Results

The VIMS instrument is a color camera that captures images in 352 different wavelengths, ranging from
~ 0.35 to ~ 5.1 μm (Brown et al., 2004). Here we mainly use the VIMS images recorded around 5 μm to
measure the zonal winds around 2,000 hPa. The techniques of data processing (Baines et al., 2005,
2009; Barnes et al., 2007; Gaddis et al., 1997; Sromovsky & Fry, 2010), the methods of measuring the zonal
winds (Baines et al., 2005, 2009; Dyudina et al., 2008, 2009; Li et al., 2004, 2011; Limaye, 1986), and the
uncertainty estimates (Baines et al., 2009; Dyudina et al., 2009; Garcia-Melendo, Perez-Hoyos, et al., 2011;
Li et al., 2004) are introduced in the supporting information.

An understanding of Saturn’s rotation period, which is used as a reference for the measurements of zonal
winds, is important. The Voyager observations (Desch & Kaiser, 1981) suggest a rotation period of 10 hr
39 min 24 s for Saturn. The new Cassini observations suggest shorter rotation periods: 10 hr 32 min 35 s
(Anderson & Schubert, 2007) or 10 hr 34 min 13 s (Read, Dowling, & Schubert, 2009). To be consistent with
our wind measurements based on the Cassini observations, this study uses the rotation periods from the
Cassini observations (Anderson & Schubert, 2007; Read, Dowling, & Schubert, 2009). A rotation period of
10 hr 33 min 24 s is used in the wind profiles determined by this study, which is an average of the two
Cassini values (10 hr 32 min 35 s and 10 hr 34 min 13 s). For comparison, the global profiles of zonal winds
referred with the old Voyager rotation period (10 hr 39 min 24 s) are also plotted in Figure 1.

Figure 1 displays the global profile of the VIMS 5-μm zonal winds around 2,000 hPa, which is compared
with the global profile of the Cassini ISS continuum band zonal winds around 300–500 hPa. The VIMS
46 and ISS wind profiles shown in Figure 1 are from different times (VIMS winds mainly in 2015–16 and
ISS winds mainly in 2004–08), but previous studies (e.g., Garcia-Melendo et al., 2011; Li et al., 2011;
Sanchez-Lavega et al., 2016) suggest that the ISS zonal winds around 300-500 hPa did not significantly
change with time during the Cassini period The investigations of the temporal variation of the VIMS zonal
winds are lacking. Therefore, we cannot rule out the possibility that the difference between the two wind
profiles shown in Figure 1 is due to temporal variations, even though it is more likely that the difference is
due to the vertical shear of zonal winds on Saturn because the VIMS images and the ISS images probe
different pressure levels.

Figure 1 shows a global-scale consistency between the VIMS and ISS profiles, which suggests that the VIMS
zonal winds around 2,000 hPa have the basically same structures as those of the ISS zonal winds around
300–500 hPa. However, there are significant differences between the two profiles at some latitudes.
These differences are greater than the estimated uncertainties, which suggests that they are statistically
robust. One of the significant differences is noted in the equatorial region (i.e., 5°S–5°N) in which the
VIMS winds are stronger than the ISS winds by approximately 50 m/s. Previous measurements of the
VIMS zonal winds in 2004–2008 (Choi et al., 2009), which have the roughly same time frame as the ISS wind
profile (Figure 1), suggest even stronger equatorial winds. Therefore, we think the equatorial zonal winds are
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stronger by at least 50 m/s at the 2,000 hPa pressure level than at the 300–500 hPa pressure level, which is
consistent with the analysis in a previous study (Sanchez-Lavega et al., 2016).

The VIMS observations suggest that the equatorial zonal winds become stronger when going deeper from
the visible clouds around 300–500 hPa. Another point of interest is to determine how the vertical shear of the
equatorial zonal winds varies above the visible clouds. Based on the Cassini/CIRS retrieved temperature,
Flasar et al. (2005) and Li et al. (2008) suggest that the equatorial zonal winds basically decay from the pres-
sure level of visible clouds (~ 300–500 hPa) to the tropopause (~ 50 hPa). Such a decay is confirmed by an
investigation based on the observations using the Cassini ISS strongest methane filter (Li et al., 2011).
Therefore, it seems that Saturn’s equatorial zonal winds keep increasing from the tropopause, which is
around 50 hPa (Fletcher et al., 2010), to the 2,000 hPa pressure level. Such a picture is qualitatively similar
to the vertical variation of Jupiter’s equatorial zonal winds measured by the Galileo Probe (Atkinson, 2001;
Atkinson et al., 1996, 1997, 1998) and the Cassini spacecraft (Flasar, Kunde, Achterberg, et al., 2004; Li et al.,
2006; Simon et al., 2015; Simon-Miller et al., 2006), in which Jupiter’s equatorial zonal winds keep increasing
from the tropopause ~ 100 hPa to the pressure level around 5,000 hPa.

The VIMS profile in Figure 1 also displays a north-south asymmetry of Saturn’s equatorial zonal winds.
Jupiter’s equatorial zonal winds at the pressure level of visible clouds also have such a latitudinal asymmetry,
which is possibly related to the north equatorial plumes via Rossby wave activities (e.g., Allison et al., 1995;
Garcia-Melendo, Arregi, et al., 2011). The VIMS maps (e.g., Figure S1) show a semiregular spacing of longitu-
dinal features a few degrees north of the equator. Such features are possibly responsible for the latitudinal
asymmetry of the VIMS equatorial zonal winds shown in Figure 1, but further analysis is needed.

Figure 1 further suggests that the VIMS zonal winds and the ISS zonal winds are basically consistent in the
latitude range from 40°S to 25°N except for the equatorial zonal winds between 5°S and 5°N. In the higher

Figure 1. Comparison of global profile between the VIMS zonal winds and the ISS zonal winds. (a) Wind profiles based on
the Voyager rotation period ~ 10 hr 39 min 24 s (Desch & Kaiser, 1981). (b) Wind profiles based on the average Cassini
rotation period ~ 10 hr 33 min 24 s (Anderson & Schubert, 2007; Read, Dowling, & Schubert, 2009). The horizontal lines
represent error bars. The global profile of the VIMS 5-μm zonal winds mainly comes from the VIMS observations in 2015–
2017 (Table S1) except for 89–89.5°S from the VIMS observations in 2006 (Dyudina et al., 2009). The global profile of the ISS
zonal winds comes from the ISS observations in 2004–2008 (Garcia-Melendo, Perez-Hoyos, et al., 2011) except for 83–
89.5°N from the ISS observations in 2013 (Antuñano et al., 2015). VIMS = Visual and Infrared Mapping Spectrometer;
ISS = Imaging Science Subsystem.
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latitudes, Figure 1b shows that the magnitudes of the VIMS zonal winds
around 2,000 hPa are generally smaller than those of the ISS zonal winds
around 300–500 hPa for both easterly jets (e.g., 77°S, 61–64°S, 34°N,
50°N, and 69°N) and westerly jets (e.g., 55°S, 43°S, 42°N, 61°N, and 87–
89°N). However, the easterly jet around 44–48°S is stronger at the
2,000 hPa pressure level than at the 300–500 hPa pressure level. In addi-
tion, the westerly jets around 86°S, 70°S, and 76°N and the easterly jet
around 79°N show the roughly consistent magnitudes of zonal winds
between the VIMS and ISS profiles. The consistent westerly jet around
76°N has roughly the same position with that of the polar hexagon, which
probably suggests that the hexagon is a propagating Rossby wave (Allison
et al., 1990; Baines et al., 2009).

Figure 1 suggests that a majority of the zonal jets in the middle and high
latitudes become weaker from the 300–500 hPa pressure level to the
2,000 hPa pressure level. Such a vertical shear of zonal winds in the middle
and high latitudes is opposite to that in the equatorial region (5°S–5°N), in
which the zonal winds are stronger at 2,000 hPa than at 300–500 hPa. It
should be mentioned that it is also possible that the differences of zonal
winds in the middle and high latitudes between the two pressure levels
are due to the temporal variations, even though previous studies of the
ISS winds (Garcia-Melendo, Perez-Hoyos, et al., 2011; Li et al., 2011;
Sanchez-Lavega et al., 2016) and our examination of the temporal varia-
tions of the VIMS winds (Figure 4) suggest that both of the ISS and VIMS
zonal winds are likely stable over time in most latitudes.

Based on the wind profiles in Figure 1, we can discuss the atmospheric sta-
bility. The total vorticity for a barotropic atmosphere, in which zonal winds
are dominant, can be expressed as the sum of the planetary vorticity (i.e.,

Coriolis parameter f) and the relative vorticity of zonal winds (�Uy = � ∂U/∂y). Then the barotropic stability
can be shown as the gradient of the total vorticity (β–Uyy, where β = ∂f/∂y and �Uyy = � ∂2U/∂y2). The bar-
otropic stability criterion suggests that flows are stable when β� Uyy> 0. When β� Uyy< 0, the flows violate
the criterion, and perturbations (e.g., waves, eddies, vortices, and turbulences) can develop. The meridional
gradient of the planetary vorticity β is positive everywhere. The Uyy in the gradient of relatively vorticity
(�Uyy) actually represents the curvature of zonal jets. Only easterly jets have positive curvature (Uyy > 0),
so that the stability criterion can possibly be violated (β � Uyy < 0). WE plot parabolas with curvature β that
are centered on the easterly jets in Figure 2, which follows a similar analysis of Jupiter’s zonal winds (Li et al.,
2004). When the easterly jets are sharper than the parabolas (Uyy > β), the jets violated the barotropic
stability criterion.

For the Cassini ISS profile, Figure 2 shows that the easterly jets around 64°S, 33°S, 34°N, 50°N, and 69°N are a
little bit sharper than the corresponding parabolas with curvature β, which suggests that these jets are mar-
ginally unstable from the barotropic perspective. On the other hand, the easterly jets around 77°S, 48°S, and
79°N are much sharper than the corresponding parabolas with curvature β, which implies that these jets are
very unstable. Basically, all easterly jets are barotropically unstable, which can help explain why Saturn’s vor-
tices are concentrated around these latitudes of easterly jets (Trammell et al., 2014, 2016). The VIMS profile in
Figure 2 shows that the VIMS easterly jets have similar sharpness with that of the ISS easterly jets except for
the VIMS jets around 46°S and 59°S. The two VIMS easterly jets are significantly sharper than the correspond-
ing ISS jets, which suggests that the two easterly jets are more unstable at 2,000 hPa than at 300–500 hPa.

Saturn’s zonal winds probably keep stable with time at most latitudes with violating the barotropic criterion
near the peaks of some easterly jets, which probably suggests that the zonal winds are baroclinic (Li et al.,
2004). The atmospheric baroclinicity is related to the vertical shear of winds. Therefore, the two wind profiles
at different pressure levels in Figure 1 can be used to examine the vertical shear of zonal winds and hence the
baroclinic stability (e.g., Holton, 2004). First, we use the vertical shear of zonal winds to examine the
Richardson number, which is closely related to the atmospheric stratification, turbulence development,

Figure 2. Curvature Uyy of the zonal wind profiles compared to β. The para-
bolic curves are defined by Uyy = β and are centered on the westward jet
maxima. Red and blue dashed parabolas are for the Visual and Infrared
Mapping Spectrometer (VIMS) and Imaging Science Subsystem (ISS) wind
profiles, respectively. Where the measured wind profile lies inside the para-
bola, the flow violates the barotropic stability criterion.
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and baroclinic instability (e.g., Allison et al., 1995; Holton, 2004). The Richardson number can be expressed as
Ri = N2/(dU/dz)2, where N is the buoyancy frequency and dU/dz is the vertical shear of zonal winds.

We first compute the static stability N2 based on Saturn’s temperature retrieved by the Cassini CIRS
(Figure 3a). We use the CIRS temperature in 2008 from a previous study (Fletcher et al., 2010). The CIRS-
retrieved temperature data are robust above the 500 hPa pressure level (Flasar, Kunde, Abbas, et al., 2004;
Fletcher et al., 2010), so we compute N2 at 500 hPa to represent the static stability in the pressure range from
300–500 to 2,000 hPa. The central difference scheme and the CIRS-retrieved temperature at 470 and 550 hPa,
which are two pressure levels close to the reference level at 500 mbar, are used to compute the static stability
N2 at 500 hPa. Then the difference of zonal winds between the VIMS and ISS profiles (Figure 1) is used to esti-
mate the vertical shear of zonal winds dU/dz (Figure 3b). Based on the static stability N2 and the vertical shear
of zonal winds dU/dz, we can compute the Richardson number Ri (Figure 3c). We also use the thermal
wind relationship to estimate the meridional temperature gradient in the pressure range from 300–
500 mbar to 2,000 hPa. The thermal wind relationship (Batchelor, 1967; Flasar et al., 2005; Li et al., 2007;
Pedlosky, 1987) can be expressed as dU/dz = (�ρRg/fP)(dT/rdΨ), where ρ is density, R is Saturn’s gas con-
stant, P is pressure, r is Saturn’s radius, and Ψ is latitude. So we have the meridional temperature gradient
as dT/dΨ = (�rfP/ρRg)(dU/dz). Here we use the density at 1,000 hPa (ρ = 0.19 kg/m3), which comes from
the NASA Space Science Data Coordinated Archive (https://nssdc.gsfc.nasa.gov/planetary/factsheet/saturn-
fact.html), to represent the average atmospheric density in the pressure range from 300–500 to 2,000 hPa.
The estimated meridional temperature gradient dT/dΨ is shown in Figure 3d. It should be cautioned that
the vertical shear of zonal winds and the related parameters shown in Figure 3 are rough estimates,
because we assume that the zonal winds linearly change from 300–500 to 2,000 hPa.

Figure 3. Static stability, vertical shear of zonal winds, Richardson number, and estimated meridional temperature gradi-
ent. (a) Static stability N2. (b) Vertical shear of zonal winds dU/dz. (c) Richardson number Ri. (d) Meridional temperature
gradient dT/dΨ. In panel c, the blue and red vertical lines stand for Ri = 1/4 and Ri = 1, respectively. Only latitudes with
Richardson numbers less than 5 are plotted in panel c. At some latitudes in which the vertical shear of zonal winds is
very small, the values of Richardson number are extremely large (>1,000). In panel d, the very narrow latitude band
around the equator (5°S–5°N), in which the classical thermal wind equation does not work (Batchelor, 1967; Pedlosky, 1987),
is left blank.
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Figure 3a shows that the static stability is positive everywhere, which suggests that Saturn’s atmosphere is
convectively stable. The panel also shows that the static stability is larger in the southern hemisphere than
in the northern hemisphere, which is related to the seasonal change on Saturn. The temperature used for
computing N2 comes from 2008 (Fletcher et al., 2010), which is the summer of the southern hemisphere.
In summer, the warmer upper atmosphere due to the solar heating (Perez-Hoyos & Sanchez-Lavega,
2006b) probably results in large static stability. A minimum of static stability appears around the equator,
which implies that Saturn’s equatorial region possibly favors convection.

Figure 3b suggests that Saturn’s equatorial region has largely negative vertical shear of zonal winds. In addi-
tion, both positive and negative vertical wind shears show up in themiddle latitudes, as well as near the north
pole. Figure 3c further shows that the values of Ri are smaller than 1 around the equator and the northern
polar region, which suggests that one necessary condition for the baroclinic instability is satisfied over there
(Allison et al., 1995; Holton, 2004). The values of Ri are even close or smaller than 1/4 near the North Pole,
which implies that the vertical shear of zonal winds is probably strong enough to sustain turbulence
(Holton, 2004). Figure 3d is the estimated meridional temperature gradient for the relatively deep atmo-
sphere in the pressure range from 300–500 mbar to 2,000 hPa. The thermal wind relationship suggests that
the meridional temperature gradient is proportional to the vertical shear of zonal winds. Therefore, these lati-
tudes with the largely positive/negative vertical shear of zonal winds have significant temperature gradients.
In some latitudes, the meridional temperature gradient can reach a couple of kelvins per degree (e.g., 45°S,
56°S, and 89°N). However, the equatorial region is an exception, in which the temperature gradient is small
even though the largely negative vertical shear of zonal winds exists. The main reason is that the Coriolis
parameter is very small in the equatorial region, so the meridional temperature gradient must be small to
keep the balance for the thermal wind relationship.

Finally, we conduct an initial analysis of temporal variations of the VIMS 5-μm zonal winds based on the
Cassini observations in multiple years. Figure 4 displays the zonal winds in the two polar regions based on

Figure 4. Comparison of the Visual and InfraredMapping Spectrometer 5-μm zonal winds among different years in the two
polar regions. (a) The northern polar region. (b) The southern polar region. The horizontal lines represent error bars. The
zonal winds before 2016 come from two previous studies, in which the 2008 zonal winds in the northern polar region
come from a study by Baines et al. (2009) and the 2006 zonal winds in the southern polar region comes from the study by
Dyudina et al. (2009). Please note that all wind profiles based on the Cassini average rotation period ~ 10 hr 33 min 24 s
(Anderson & Schubert, 2007; Read, Dowling, & Schubert, 2009).
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the observations during the period of 2016–2017. The new measurements in 2016–2017 are further com-
pared with previous measurements in 2006 and 2008 (Baines et al., 2009; Dyudina et al., 2009). This figure
shows that the difference of the VIMS zonal winds among different years are smaller than the uncertain-
ties of measurements for most latitudes except for the latitudinal range of 85–90°N. The zonal jet centered
at ~ 88°N experienced significant decrease at 44 ± 14 m/s (33 ± 14%) from 135 ± 7 m/s in 2008 to
91 ± 12 m/s in 2017. The results shown in Figure 4 are limited to high latitudes and do not cover all years
of the Cassini observations. A systematic analysis of the VIMS zonal winds across all latitudes and during
the complete Cassini period (2004–2017) will shed more light on the temporal variations of the VIMS zonal
winds on Saturn.

3. Conclusions and Discussions

In this study, we provide an analysis of the spatiotemporal variations of the relatively deep zonal winds with
the Cassini VIMS observations. The first global profile of the zonal winds around the 2,000 hPa pressure level is
generated. The comparison between the VIMS zonal wind and the ISS zonal wind profiles suggests a consis-
tency of wind structure on a global scale. However, significant differences between the two wind profiles are
identified at some latitudes. In particular, the equatorial region from 5°S to 5°N shows an increase in wind
speed by at least 50 m/s from 300–500 to 2,000 hPa. Conversely, a decrease of wind speed from 300–500
to 2,000 hPa exists for most zonal jets in middle and high latitudes.

The zonal winds at the two pressure levels (300–500 and 2,000 hPa) are further used to investigate the atmo-
spheric stability, which suggests that most zonal jets in the two pressure levels are barotropically unstable.
The investigation of Richardson number further suggests that one necessary condition for the baroclinic
instability is satisfied in these latitudes with significant vertical shear of zonal winds. Finally, the thermal wind
relationship suggests that the meridional temperature gradient in the pressure range from 300–500 to
2,000 hPa can reach a couple of kelvins per degree at some middle and high latitudes.

The Cassini observations in different years are used to explore the temporal variations of the VIMS 5-μm zonal
winds, which suggests that the VIMS 5-μm zonal winds were basically constant from 2006 to 2017 in the two
polar regions except for the latitude range of 85–90°N where a westerly jet decreased ~ 44 ± 14 m/s from
2008 to 2017.

This paper is an initial study of a systematic analysis characterizing the spatiotemporal variations of Saturn’s
zonal winds with the long-term (2004–2017) multi-instrument observations (i.e., CIRS, ISS, and VIMS). First,
the current study mainly focuses on the recent three years (2015–2017) even though some previous mea-
surements are discussed. Therefore, only one global profile of the VIMS 5-μm zonal winds is provided. In
principle, we can get multiple global profiles of the VIMS 5-μm zonal winds based on the Cassini long-term
(2004–2017) observations. Multiple global profiles will make it possible to explore the temporal variations of
the relatively deep zonal winds around 2,000 hPa not only in the polar region but also in other latitudes.
Second, the combinations of the VIMS measurements with the investigations of zonal winds by the ISS
and CIRS will help us get a more complete picture of the vertical structure of Saturn’s zonal winds not only
below but also above the visible ammonia clouds.
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