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ABSTRACT

Principal component analysis (PCA) is utilized to explore the temporal and spatial variability of pre-
cipitation from GPCP and a CAM5 simulation from 1979 to 2010. In the tropical region, the interannual
variability of tropical precipitation is characterized by two dominant modes (El Niño and El Niño Modoki).
The first and second modes of tropical GPCP precipitation capture 31.9% and 15.6% of the total variance,
respectively. The first mode has positive precipitation anomalies over the western Pacific and negative pre-
cipitation anomalies over the central and eastern Pacific. The second mode has positive precipitation
anomalies over the central Pacific and negative precipitation anomalies over the western and eastern Pacific.
Similar variations are seen in the first two modes of tropical precipitation from a CAM5 simulation, although
the magnitudes are slightly weaker than in the observations. Over the Northern Hemisphere (NH) high
latitudes, the first mode, capturing 8.3% of the total variance of NH GPCP precipitation, is related to the
northern annular mode (NAM). During the positive phase of NAM, there are negative precipitation
anomalies over the Arctic and positive precipitation anomalies over the midlatitudes. Over the Southern
Hemisphere (SH) high latitudes, the first mode, capturing 13.2% of the total variance of SH GPCP pre-
cipitation, is related to the southern annular mode (SAM). During the positive phase of the SAM, there are
negative precipitation anomalies over the Antarctic and positive precipitation anomalies over the mid-
latitudes. The CAM5 precipitation simulation demonstrates similar results to those of the observations.
However, they do not capture both the high precipitation anomalies over the northern Pacific Ocean or the
position of the positive precipitation anomalies in the SH.

1. Introduction

Precipitation can be influenced by different factors,
such as atmospheric temperature, circulation, and
clouds (Trenberth and Shea 2005; Adler et al. 2008;
Allan and Soden 2008; Liu et al. 2009; Li et al. 2011;
Bony et al. 2013). In response to global warming, global

mean precipitation is found to increase with a slower
trend than the total mass of the water vapor (Allen and
Ingram 2002;Adler et al. 2003; Held and Soden 2006;Gu
et al. 2007; Adler et al. 2008; Stephens and Ellis 2008; Li
et al. 2011). In addition to the global mean precipitation,
some studies (Chou and Neelin 2004; Allan and Soden
2007; Chou et al. 2009; Li et al. 2011; Durack et al. 2012;
Polson et al. 2013; Chou et al. 2013; Trammell et al.
2015) explored precipitation variations over different
regions and found that precipitation has an increasing
tendency in the wet areas and has a decreasing tendency
in the dry areas. In addition to the external forcing,
changes in the precipitation can also be attributed to
natural climate variability, such as El Niño and Pacific
decadal variability (Smith et al. 2006; Ashok et al. 2007;
Gu and Adler 2012; Marvel and Bonfils 2013). Using
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annual average precipitation data, Smith et al. (2006)
found that most variations in precipitation are related to
El Niño–Southern Oscillation. Gu and Adler (2012)
found that the Pacific decadal variability could also in-
fluence precipitation variations. In this paper, we will
analyze the variability of precipitation over the tropics,
the Northern Hemisphere (NH) high latitudes, and the
Southern Hemisphere (SH) high latitudes, respectively.
Moreover, we will compare the precipitation variations
between observations and model simulations. These
analyses can help us to better understand precipitation
variability in different regions and identify if a current
model can successfully simulate precipitation variations.

2. Data and model

Precipitation data are utilized from the Global Pre-
cipitation Climatology Project (GPCP) (Adler et al.
2003; Huffman et al. 2009), which is an international
project designed to construct the global long-term re-
cord of precipitation on behalf of the World Meteo-
rological Organization (WMO), the World Climate
Research Programme (WCRP), and the Global Energy
and Water Cycle Experiment (GEWEX) (Huffman
et al. 1997). The GPCP version 2.2 precipitation data-
set, derived from satellite and gauge measurements, is
available from 1979 to the present. GPCP incorporates
data from emission and scattering estimates from SSM/I
and SSMIS instruments, GPI and outgoing longwave ra-
diation (OLR) precipitation index (OPI) estimates and
rain gauge analysis, and TOVS and Atmospheric Infra-
red Sounder (AIRS) estimates (Huffman and Bolvin
2012). The combined GPCP satellite-based precipitation
dataset is adjusted by the rain gauge analysis (Adler et al.
2003). Since there are no surface rain gauge data avail-
able over the Antarctic region, GPCP precipitation data
relymainly on satellite data and have less constraint from
in situ rain gauge data over the Antarctic (Huffman et al.
2009). Most areas of the Antarctic have low values of
precipitation, so the lack of rain gauge data over the
Antarctic will not greatly influence the results. GPCP
version 2.2 precipitation data are provided by the
NOAA/OAR/ESRL Physical Sciences Division (PSD)
and can be downloaded online (http://www.esrl.noaa.gov/
psd/data/gridded/data.gpcp.html). The spatial resolution
of the data is 2.58 3 2.58 in latitude/longitude.
Geopotential height data are used to explore the con-

nection between precipitation variability and atmospheric
dynamics. Data from the National Centers for Environ-
mental Prediction–U.S. Department of Energy (NCEP–
DOE) AMIP-II reanalysis (NCEP-2; Kanamitsu et al.
2002) for geopotential height are used. The resolution of
the NCEP-2 geopotential height data is 2.58 3 2.58.

In addition to the GPCP precipitation and NCEP-2
geopotential height datasets, we have performed a
simulation using the National Center for Atmospheric
Research (NCAR) Community Atmosphere Model,
version 5 (CAM5), for the period of 1979–2010 in this
research. CAM5 is the atmospheric component of the
Community Earth System Model, version 1 (CESM1).
In CAM5, the radiation scheme incorporates the Rapid
Radiative Transfer Model for GCMs (RRTMG; Iacono
et al. 2008). The moist boundary layer is parameterized
using the Bretherton and Park (2009) scheme, and the
large-scale cloud and precipitation processes are parame-
terized with a prognostic two-moment bulk cloud micro-
physics scheme (Morrison and Gettelman 2008). Shallow
convection is parameterized using Park and Bretherton
(2009), and deep convection is parameterized using the
Zhang and McFarlane (1995) convection scheme with a
dilution approximation for the calculation of convective
available potential energy (Neale et al. 2008). The CAM5
simulation uses observed sea surface temperature as part
of the lower boundary conditions, with a horizontal reso-
lution of 2.58 3 1.98. For comparison, we have also ex-
amined precipitation from the GISS-E2-R AMIP-type
simulations from phase 5 of CMIP (CMIP5), which are
available from the CMIP5 archives (Taylor et al. 2012).
Observed sea surface temperatures are used to drive the
GISS-E2-R model (hereafter GISS model) with a hori-
zontal resolution of 2.58 3 28 (Shindell et al. 2013).

3. Methodology

To explore the temporal and spatial variability of pre-
cipitation, the linear trend is first removed from the time
series between 1979 and 2010. Seasonal cycles for each
time series are extracted, and a low-pass filter is applied to
the precipitation anomaly to remove the high-frequency
oscillation. The filter is constructed as the convolution of a
step function with a Hanning window and was chosen to
obtain a full signal from periods above 15 months and no
signal from periods below 12.5 months (Jiang et al. 2004).
Then, the principal component analysis (PCA) (Richman
1986; Preisendorfer 1988; Thompson and Wallace 2000;
Camp et al. 2003; Jiang et al. 2008a; Jiang et al. 2008b) is
applied to the detrended, deseasonalized, and low-pass-
filtered precipitation data from GPCP and CAM5.
PCA provides a decomposition of a multivariate dataset

into empirical orthogonal functions (EOFs), with associated
time-dependent amplitude, known as principal component
(PC) time series. The EOFs are the Eigenfunctions of the
covariance matrix of the dataset sorted by the decreasing
values of associated Eigen values. Since these Eigen values
represent the variance captured by each EOF, PCA guar-
antees that the leading n EOFs capture more of the total
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variance of the dataset than any other n orthogonal vectors.
However, PCA is not a scale-independent method. There-
fore, it is necessary to weigh each element of the covariance
matrix by the area it represents; that is, we scale each time
series by the square root of the area [(cosu)

1/2, where u is the
latitude], prior to constructing the covariance matrix
(Baldwin et al. 2009). Eigenfunctions of the covariance
matrix of the dataset are the EOFs, with associated time-
dependent amplitude PC time series. To recover the spatial
patterns for the original (unscaled) precipitation anomaly, a
multiple linear regression is performed for each grid point,
using as predictors the PC time series. The resulting linear
regression coefficients are the spatial patterns of the pre-
cipitation variability associated with the ith PC time series.

4. PCA results of GPCP and model precipitation

a. Results for tropical precipitation

1) RESULTS FOR GPCP PRECIPITATION IN THE

TROPICS

PCA is utilized to analyze the interannual variability
of the GPCP precipitation in the tropics (308N–308S).
The first leading mode accounts for 31.9% of the total
variance of the GPCP tropical precipitation anomalies.
The spatial pattern of the precipitation anomalies re-
gressed on the first PC is shown in Fig. 1a. There are
positive precipitation anomalies over the western Pacific
and negative precipitation anomalies over the central

FIG. 1. (a) The spatial pattern of the first mode of the GPCP precipitation anomalies in the
tropics (mm month21). (b) PC1 of the tropical GPCP precipitation (solid line) and the low-
pass-filtered SOI (dashed line). The correlation coefficient is 0.90 (0.1% significance level).
(c) Power spectral estimate of PC1. The first mode explains 31.9% of the total variance.
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and eastern Pacific. Values range from 60mm month21

in the western Pacific and 260mm month21 in the cen-
tral and eastern Pacific. The spatial pattern is similar to
the first mode of the global annual GPCP precipitation
anomalies (Smith et al. 2006) and the relationship be-
tween the GPCP rainfall anomalies and the Niño-3
index (Ashok et al. 2007). The SouthernOscillation index
(SOI) is used to calculate the correlation between ENSO
and PC1. A positive SOI represents La Niña events,
while a negative SOI illustrates El Niño events. For a fair
comparison, a low-pass filter is applied to the detrended
SOI. The correlation between the time series of the de-
trended and low-pass-filtered SOI and the first mode
(PC1) of the GPCP tropical precipitation anomalies is
very high, reaching 0.90, shown in Fig. 1b. The corre-
sponding significance level is 0.1%. The significance sta-
tistics for the correlations were generated by using a
Monte Carlo method (Press et al. 1992; Jiang et al. 2004).
During La Niña months, there are positive precipitation
anomalies over the western Pacific and negative pre-
cipitation anomalies over the central and eastern Pacific.
During El Niño months, there are negative precipitation
anomalies over the western Pacific and positive pre-
cipitation anomalies over the central and eastern Pacific.
A power spectral analysis is also applied to PC1. The
power spectrum of the PC1, shown in Fig. 1c, demon-
strates strong spectral peaks near 2–7 yr, similar to
those in ENSO. The statistical significance of the sig-
nals in a power spectrum is obtained by comparing the
amplitude of a spectral peak to the red noise spectrum
(Gilman et al. 1963). The red noise spectrum used in
constructing the null hypothesis for significance is the
spectrum associated with the autocorrelation function
(Gilman et al. 1963; Jiang et al. 2008a). The 90% and
95% confidence intervals for the power spectrum are
found using F statistics to compare the spectrum to the
red noise spectrum (Jiang et al. 2008a).
The second leading mode accounts for 15.6% of the

total variance of the GPCP tropical precipitation
anomalies. Illustrated in Fig. 2a is the spatial pattern of
the precipitation anomalies regressed on the second PC
of the GPCP tropical precipitation. There are positive
precipitation anomalies over the central Pacific and
negative precipitation anomalies over the western and
eastern Pacific. Values range from 60mm month21 in
the central Pacific to 240mm month21 in the western
and eastern Pacific. The El NiñoModoki index (EMI) is
used to calculate the correlation between the phenom-
enon known as El NiñoModoki and the second PC time
series, which is demonstrated in Fig. 2b. EMI is defined
as the second principal component time series of
the tropical Pacific sea surface temperature anomaly
(SSTA) (Ashok et al. 2007). A low-pass filter is then

applied to the detrended EMI time series. The correla-
tion coefficient between the detrended and low-pass-
filtered EMI and PC2 of the GPCP precipitation
anomalies is 0.77 (at a 0.1% significance level), sug-
gesting that the second mode of the GPCP tropical
precipitation anomalies is related to El Niño Modoki.
During the positive phase of El Niño Modoki, there are
more positive SSTAs over the central Pacific than the
western and eastern Pacific, which will bring more pre-
cipitation to the central Pacific than to the western and
eastern Pacific. During the negative phase of El Niño
Modoki, the SSTA is negative over the central Pacific,
which can lead to negative precipitation anomalies over
the region. The power spectrum of the PC2 time series,
shown in Fig. 2c, demonstrates 90% significant spectral
peaks at 2.6 and 8.5 yr.

2) RESULTS FOR MODEL PRECIPITATION IN THE

TROPICS

PCA is now applied to the CAM5 precipitation over
the tropics (308N–308S) to investigate if the model can
correctly simulate the influence of ENSO and El Niño
Modoki on precipitation. The first leadingmode accounts
for 24.3% of the total variance of CAM5 tropical pre-
cipitation anomalies. Illustrated in Fig. 3a is the spatial
pattern of the CAM5 precipitation anomalies regressed
on the first PC of CAM5 precipitation over the tropics.
This mode demonstrates a pattern similar to the leading
mode of the observed GPCP precipitation anomalies,
although the magnitudes are somewhat underpredicted.
Comparison of the time series of the detrended and low-
pass-filtered SOI and the PC1 of the CAM5 tropical
precipitation anomalies is shown in Fig. 3b. The correla-
tion coefficient between the two time series is 0.87 (0.1%
significance level). Additionally, the PC1 of the CAM5
tropical precipitation anomalies correlates well with the
PC1 of the GPCP tropical precipitation anomalies with a
correlation coefficient of 0.94 (0.1% significance level).
The power spectrum of the PC1 of the CAM5 tropical
precipitation anomalies, shown in Fig. 3c, demonstrates
strong spectral peaks between 2 and 7yr. Similar analyses
are applied to GISS model AMIP-type CMIP5 simula-
tions. The leading mode of the GISS model tropical
precipitation anomalies captures 25.2% of the total var-
iance. It has a similar spatial pattern to the first mode of
the GPCP tropical precipitation anomalies. However,
there are some discrepancies over the western Pacific
Ocean and in the magnitudes. PC1 of the GISS model
tropical precipitation correlates well with the detrended
and low-pass-filtered SOI index with a correlation co-
efficient of 0.8 (0.1% significance level).
The second mode of the CAM5 tropical precipitation

anomalies captures 11.6% of the total variance in the
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CAM5 tropical precipitationanomalies. Illustrated inFig. 4a
is the spatial pattern of the CAM5 precipitation anomalies
regressed on the second PC of the CAM5 tropical pre-
cipitation anomalies. This mode demonstrates a pattern
similar to that of the observed GPCP second mode but,
again, with weaker magnitudes. The correlation coefficient
between PC2 and low-pass and detrended EMI is 0.74
(0.1% significance level), as illustrated in Fig. 4b. Like the
first mode, PC2 of the CAM5 tropical precipitation anom-
alies correlates well with PC2 of the GPCP tropical pre-
cipitation anomalies, with a correlation coefficient of 0.89
(0.1% significance level). The power spectrumof PC2 of the
CAM5 tropical precipitation anomalies, shown in Fig. 4c,
reveals 90% significant spectral peaks at 2.5, 5–6, and 8yr.
The second mode of the GISS model tropical precipitation

anomalies captures 9.6% of the total variances. It is similar
to the spatial pattern of the second mode of the GPCP
tropical precipitation anomalies, although there are some
differences in the magnitudes. PC2 of the GISS model
tropical precipitation correlates well with the detrended and
low-pass-filtered EMI with a correlation coefficient of 0.7
(0.1% significance).
In summary, the precipitation signals in both El Niño

and El Niño Modoki are well captured in the CAM5
simulation. However, the magnitudes of the first two
modes in CAM5 are weaker than the observations.
Similar analyses have also been applied to the GISS
model simulations. The GISS model simulates El Niño
and El Niño Modoki signals reasonably well, but there
are some differences in the magnitudes.

FIG. 2. (a) The spatial pattern of the secondmode of theGPCP precipitation anomalies in the
tropics (mm month21). (b) PC2 of the tropical GPCP precipitation (solid line) and low-pass-
filtered EMI (dashed line). The correlation coefficient is 0.77 (0.1% significance level).
(c) Power spectral estimate of PC2. The second mode explains 15.6% of the total variance.
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b. Results for precipitation over NH high latitudes

1) RESULTS FOR GPCP PRECIPITATION OVER NH
HIGH LATITUDES

PCA is utilized to analyze the interannual variability
of the GPCP precipitation anomalies in the NH high
latitudes (308–908N). The first mode accounts for 8.3%
of the total variance of GPCP precipitation anomalies
in the NH high latitudes. The polar projection of the
spatial pattern of the precipitation anomalies regressed
upon PC1 of theGPCP precipitation anomalies is shown
in Fig. 5a. The first mode is approximately zonally
symmetric and the center is slightly off theNorth Pole. It

exhibits negative precipitation anomalies in the polar
region and positive precipitation anomalies in the mid-
latitudes, which coincide with the storm track regions.
As shown in Fig. S1a of the supplementary material,
the positive precipitation anomalies are related to the
storm track activities calculated as the variance in sea
level pressure (Chang and Fu 2002). The temporal be-
havior of PC1 in the NH is shown in Fig. 5b. For com-
parison, the 300-hPa northern annular mode (NAM)
index is overlaid as a dashed line. The NAM index is the
PC associated with the first leading mode, capturing
14.7% of the total variance, for the NCEP-2 geo-
potential height at 300hPa from 1979 to 2010 (Baldwin
and Dunkerton 1999; Thompson andWallace 2000). The

FIG. 3. (a) The spatial pattern of the first mode of the CAM5 precipitation anomalies in the
tropics (mm month21). (b) PC1 of the tropical CAM5 precipitation (solid line) and the low-
pass-filtered SOI (dashed line). The correlation coefficient is 0.87 (0.1% significance level).
(c) Power spectral estimate of PC1. The first mode explains 24.3% of the total variance.
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correlation coefficient between the detrendedPC1 and the
detrended and low-pass-filtered NAM index is 0.50 (0.1%
significance level). When the polar vortex is stronger and
the NAM index is positive, there are negative pre-
cipitation anomalies over the polar region and positive
precipitation anomalies over the midlatitudes. The power
spectrum of PC1 of the precipitation anomalies over the
NHhigh latitudes in Fig. 5c reveals 90% significant spectral
peaks at 17 months, 32 months, and 8 years.

2) RESULTS FORCAM5 PRECIPITATIONOVERNH
HIGH LATITUDES

PCA is next applied to the CAM5 precipitation over
the NH high latitudes (308–908N) to investigate if the

model can correctly simulate the variability in the high
latitudes. The leading mode accounts for 8.2% of the
total variance of the CAM5 precipitation anomalies in
the NH high latitudes. Illustrated in Fig. 6a is the spatial
pattern of the CAM5 precipitation anomalies regressed
on the first PC of the CAM5 precipitation anomalies in
the NH high latitudes. This mode demonstrates patterns
similar to those of the observed GPCP leading mode,
although it does not capture the high precipitation
anomalies over the Pacific Ocean. To explore the pos-
sible relationship between this mode and the polar
vortex simulated in CAM5, the leading mode and PC
of the CAM5 300-hPa geopotential height anomalies
are calculated from 1979 to 2010. The detrended and

FIG. 4. (a) The spatial pattern of the second mode of the CAM5 precipitation anomalies in
the tropics (mmmonth21). (b) PC2 of the tropical CAM5 precipitation (solid line) and the low-
pass-filtered EMI (dashed line). The correlation coefficient is 0.74 (0.1% significance level).
(c) Power spectral estimate of PC2. The second mode explains 11.6% of the total variance.
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low-pass-filtered PC1 of CAM5 300-hPa geopotential
height anomalies is overlaid with PC1 of the CAM5
precipitation anomalies in Fig. 6b. The correlation be-
tween the two time series is 0.80 (0.1% significance
level). Additionally, the model PC1 correlates well with
GPCP PC1 with a correlation coefficient of 0.44 (0.1%
significance level). The power spectrum of the PC1
mode, shown in Fig. 6c, demonstrates 90% significant
spectral peaks at 30 months and 8 years. A similar
analysis is applied to the GISS model precipitation over
the NH high latitudes. The first mode of the GISS pre-
cipitation anomalies over theNHhigh latitudes captures
8.8% of the total variance. It has a similar spatial pattern

to the first mode of the GPCP precipitation anomalies.
However, it has some difficulty in simulating the positive
precipitation anomalies over the northern Pacific
Ocean. PC1 of GISS model NH precipitation has a
weak correlation with PC1 of GPCP NH precipitation,
showing a correlation of 0.39 (1% significance).

c. Results for precipitation over SH high latitudes

1) RESULTS FOR GPCP PRECIPITATION OVER SH
HIGH LATITUDES

In the SH, the first mode accounts for 13.2% of the
total variance, as illustrated in Fig. 7a. The first mode is

FIG. 5. (a) The spatial pattern of the first mode of theGPCP precipitation anomalies in the NH
(mm month21). (b) PC1 of the NH GPCP precipitation (solid line) and the 300-hPa low-pass-
filtered NAM index (dashed line). The correlation coefficient is 0.50 (0.1% significance level).
(c) Power spectral estimate of PC1. The first mode explains 8.3% of the total variance.
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zonally symmetric and strongly resembles the first mode
in the NH; it is associated with the southern annular
mode (SAM; Thompson and Wallace 2000). The first
mode has negative precipitation anomalies in the polar
region and positive precipitation anomalies in the mid-
latitudes. The positive precipitation anomalies coincide
with the positive storm track anomalies over the South
Pacific Ocean, as shown in Fig. S1b of the supplemen-
tary material. PC1 of the GPCP precipitation anomalies
over the SH high latitudes is compared with the low-
pass-filtered 300-hPa SAM index (dotted line) in Fig. 7b.
The correlation coefficient between the detrended PC1 and
detrended and low-pass-filtered SAM index is 0.4 (0.7%

significance level). A stronger polar vortex in the SH (pos-
itive SAM index) will lead to less precipitation in the SH
high latitudes. The power spectrumof the detrended PC1 in
Fig. 7c reveals 90% significant peaks at 30 months, 4 years,
and 10 years.

2) RESULTS FOR CAM5 PRECIPITATION OVER SH
HIGH LATITUDES

PCA is then applied to the CAM5 precipitation over
the SH high latitudes (308–908S) to investigate if the
model can correctly simulate the variability in the SH
high latitudes. The first leading mode accounts for
10.3% of the total variance of the CAM5 precipitation

FIG. 6. (a) The spatial pattern of the firstmode of theCAM5precipitation anomalies in theNH
(mmmonth21). (b) PC1of theNHCAM5precipitation (solid line) andPC1of theCAM5300-hPa
geopotential height (dashed line). The correlation coefficient is 0.8 (0.1% significance level).
(c) Power spectral estimate of PC1. The first mode explains 8.2% of the total variance.
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anomalies over the SH high latitudes. Illustrated in
Fig. 8a is the spatial pattern of the CAM5 precipitation
anomalies regressed on the first PC of the CAM5 pre-
cipitation anomalies over the SHhigh latitudes. Thismode
demonstrates patterns similar to those of the observed
GPCP leading mode, although the positions for the posi-
tive precipitation anomalies are slightly different than in
the observations. Comparison of the time series of PC1 of
the CAM5 precipitation anomalies over the SH high lat-
itudes and PC1 of the CAM5 300-hPa geopotential height
anomalies reveals a good correlation coefficient of 0.5
(0.1% significance level), as shown inFig. 8b. Furthermore,
the model PC1 corresponds well with the PC1 of the

308–908SGPCP data, with a correlation coefficient of 0.75
(0.1% significance level). The power spectrum of the
PC1, depicted in Fig. 8c, demonstrates 90% significant
spectral peaks at 22 months, 3.5 years, and 11 years. A
similar analysis is applied to theGISSmodel precipitation
over the SH high latitudes. The first mode of GISS model
SH precipitation captures 12.3% of the total variance. It
has a similar spatial pattern to the first mode of the GPCP
SH precipitation anomalies, yet it cannot simulate the
positions of the positive precipitation anomalies well. The
correlation coefficient between PC1 of the GISS model
SH precipitation anomalies and PC1 of the GPCP SH
precipitation anomalies is 0.6 (0.1% significance).

FIG. 7. (a) The spatial pattern of the first mode of the GPCP precipitation anomalies in the
SH (mm month21). (b) PC1 of the SH GPCP precipitation (solid line) and the 300-hPa SAM
index (dashed line). The correlation coefficient is 0.40 (0.4% significance level). (c) Power
spectral estimate of PC1. The first mode explains 13.2% of the total variance.
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5. Conclusions and discussion

PCA has been applied to GPCP precipitation data and
a CAM5 simulation over the tropics, NH high latitudes,
and SH high latitudes. The first leading mode of tropical
GPCP precipitation anomalies, capturing 31.9% of the
total variance, illustrates positive precipitation anomalies
over the western Pacific and negative precipitation
anomalies over the central and eastern Pacific, which is
related to LaNiña andElNiño. The correlation coefficient
between PC1 of the tropical GPCP precipitation anoma-
lies and SOI is 0.9. The second leading mode of tropical
GPCP precipitation anomalies, capturing 15.6% of the

total variance, demonstrates positive precipitation anom-
alies over the central Pacific and negative precipitation
anomalies over the western and eastern Pacific, which can
be explained by the unique tripolar nature of the SSTA
caused by El Niño Modoki. The correlation between PC2
of tropical GPCP precipitation anomalies and EMI is 0.75.
The results of the tropical precipitation anomalies from
CAM5 are similar to those of the observed GPCP, although
magnitudes are somewhat underestimated for both modes.
The first leading mode of the GPCP precipitation

anomalies over 308–908N is approximately zonally
symmetric, with negative precipitation anomalies in the
polar region and positive precipitation anomalies in the

FIG. 8. (a) The spatial pattern of the first mode of the CAM5 precipitation anomalies in the SH
(mmmonth21). (b) PC1 of the SHCAM5precipitation (solid line) and PC1 of theCAM5 300-hPa
geopotential height (dashed line). The correlation coefficient is 0.5 (0.1% significance level).
(c) Power spectral estimate of PC1. The first mode explains 10.3% of the total variance.
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midlatitudes, which is related to NAM. The correlation
coefficient between PC1 of the NH high-latitude GPCP
precipitation anomalies and NAM is 0.5. When a
stronger polar vortex exists, the NAM index is positive,
and there are negative precipitation anomalies over the
Arctic and positive precipitation anomalies over the NH
midlatitudes. The leading mode of the 308–908S GPCP
precipitation anomalies is associated with the southern
annular mode (SAM). When the SAM index is positive,
there is less precipitation over the Antarctic and more
precipitation over the SH midlatitudes. The CAM5
precipitation simulation demonstrates patterns similar
to those of the observed GPCP, yet they do not capture
the high precipitation anomalies over the NH Pacific
Ocean and the position of the positive precipitation
anomalies is slightly different in the SH. Similar ana-
lyses are also applied to AMIP-type CMIP5 simula-
tions from the GISS model. Both CAM5 and the GISS
model can simulate the precipitation reasonably well,
except that the first mode of the GISS model pre-
cipitation anomalies in the NH high latitudes has a
relatively weak correlation with PC1 of the GPCP
precipitation. This result suggests that the observed sea
surface temperature is important for the correct simu-
lation of precipitation at different regions. Neverthe-
less, some of the differences between the observed and
modeled precipitation patterns in the middle and high
latitudes may be due to different internal variabilities
that are present in the observations and in the AMIP
runs (Coats et al. 2013).
In addition to the sea surface temperature, CAM5 is also

very effective in simulating the clouds, which is crucial for
an accurate representation of precipitation in different re-
gions. Results revealed from this study can help us to better
understand the dominant variability of precipitation over
the tropics, theArctic, and theAntarctic. By comparing the
leading modes between observations and models, we can
identify possible deficiencies in the model simulations,
which are important for correct simulations andpredictions
of precipitation extremes in the future.
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